
AFRL-IF-WP-TR-2002-1536

NIMBLE COMPILER ENVIRONMENT FOR
AGILE HARDWARE
Volume 1

Dr. Don MacMillen

Synopsys Inc.
Advanced Technology Group
700 East Middlefield Road
Mountain View, CA 94043-4033

OCTOBER 2001

FINAL REPORT FOR 01 APRIL 1998 – 24 JULY 2001

THIS REPORT CONTAINS COPYRIGHTED MATERIAL.

INFORMATION DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334

Approved for public release; distribution is unlimited.

Report Documentation Page

Report Date
01SEP2001

Report Type
N/A

Dates Covered (from... to)
17OCT1997 - 28SEP2001

Title and Subtitle
Nimble Compiler Environment for Agile Hardware,
Volume 1

Contract Number

Grant Number

Program Element Number

Author(s)
MacMillen, Don

Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and Address(es)
Synopsys, Inc. Advanced Technology Group 700 East
Middlefield Road Mountain View, CA 94043-4033

Performing Organization Report Number

Sponsoring/Monitoring Agency Name(s) and
Address(es)
Information Directorate Air Force Research Laboratory
Air Force Materiel Command Wright-Patterson AFB, OH
45433-7334

Sponsor/Monitor’s Acronym(s)

Sponsor/Monitor’s Report Number(s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes
The original document contains color images.

Abstract

Subject Terms

Report Classification
unclassified

Classification of this page
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
SAR

Number of Pages
232

NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED IN
THIS DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT PROCUREMENT
DOES NOT IN ANY WAY OBLIGATE THE US GOVERNMENT. THE FACT THAT THE
GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR
OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY OTHER PERSON OR
CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE,
OR SELL ANY PATENTED INVENTION THAT MA Y RELATE TO THEM.

THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNICAL INFORMATION SERVICE
(NTIS). AT NTIS, IT WILL BE AVAILABLE TO THE GENERAL PUBLIC, INCLUDING
FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION.

ALFR ,t;: sJARP~ fIl-
Team Leader
Embedded Info Sys Engineering Branch
Information Technology Division

,

~~'i:~ Chief
Embedded Info Sys Engineering Branch
Information Technology Division
Information Directorate

Do not return copies of this report unless contractual obligations or notice on a specific document requires its return.

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204,
Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not
display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

October 2001 Final 04/01/1998 – 07/24/2001
5a. CONTRACT NUMBER

F33615-98-2-1317
5b. GRANT NUMBER

4. TITLE AND SUBTITLE

NIMBLE COMPILER ENVIRONMENT FOR AGILE HARDWARE
Volume 1

5c. PROGRAM ELEMENT NUMBER
69199F

5d. PROJECT NUMBER

ARPI
5e. TASK NUMBER

FT

6. AUTHOR(S)

Dr. Don MacMillen

5f. WORK UNIT NUMBER

02
8. PERFORMING ORGANIZATION

 REPORT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Synopsys Inc.
Advanced Technology Group
700 East Middlefield Road
Mountain View, CA 94043-4033

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY ACRONYM(S)
AFRL/IFTA

INFORMATION DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WPAFB, OH 45433-7334

DEFENSE ADVANCED RESEARCH PROJECTS
AGENCY
INFORMATION TECHNOLOGY OFFICE
3701 NORTH FAIRFAX DRIVE
ARLINGTON, VA 22209-2308

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER(S)
AFRL-IF-WP-TR-2002-1536

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
This report contains copyright material. Report contains color.
14. ABSTRACT (Maximum 200 Words)

The utilization of a tightly coupled general purpose processor (GPP) and reconfigurable logic array (RLA) has demonstrated
appreciable acceleration in some compute intensive applications. Such systems have been very difficult to program though and thus
have not been explo ited for their benefits. The problem is the lack of an appropriate design environment for system engineers like
those typically found in digital signal processing (DSP) embedded system development. The Nimble Complier research project
aims to develop a retargetable design compiler for these adaptable architectures that will exploit the performance gains and
hardware whenever it is needed as opposed to being predesigned into hardware. Field updates or modal changes in function are
simple. Embedded applications across a wide spectrum of programming language styles will be targeted for support. The resultant
environment should accelerate adoption of these computing platforms by making the systems easier to develop and more robust to
multiple standards. The Government benefits from this effort by enabling the compute intensive portions of military electronic
systems to be smaller, cheaper, and field upgradeable.

15. SUBJECT TERMS

ACS (Adaptive Computing Systems), reconfigurable computing, field-programmable gate arrays, FPGAs, system design,
co-design, programming environments, partitioning, retargetable C complier, digital signal processing, DSP
16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON (Monitor)

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER OF
PAGES

236 Kerry L. Hill
19b. TELEPHONE NUMBER (Include Area Code)

(937) 255-6548 x3604

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

iii

Table of Contents

1 OVERVIEW OF THE NIMBLE COMPILER PROJECT .. 1
1.1 Introduction of Agileware Architectures..1
1.2 The Nimble Compiler Approach..2
1.3 Top-Level Flow of the Nimble Compiler..5
1.4 What Is Included in This Report and Supporting Documents ..6

2 NIMBLE TECHNOLOGIES.. 8
2.1 Task 1: Tool Architecture and Environment ...8
2.2 Task 2: Nimble Compiler Front-End and SW Code Generator...9
2.3 Task 3: Performance and Capacity Drive Partitioner ..17
2.4 Task 4: Datapath Compiler Back-end..18
2.5 Task 5: Functional Generator Library Research and Prototyping...19
2.6 Task 6: Benchmarking and Demonstrations (application development using tools)21

3 PROJECT CONCLUSIONS... 24
4 REFERENCES.. 25

APPENDIX A. OVERVIEW OF THE ACEV ENVIRONMENT..26

APPENDIX B. A COMPREHENSIVE PROTOTYPING-PLATFORM FOR HARDWARE-SOFTWARE
CO-DESIGN..67

APPENDIX C. PORTING RTEMS TO THE ACE HARDWARE PLATFORM...73

APPENDIX D. PROFILING TOOLS AND RESULT VIEWERS FOR THE NIMBLE COMPILER
PROJECT... 135

1 LOOP PROCEDURE HIERARCHY GRAPH (LH)..135
2 LOOP ENTRY TRACE PROFILE (LEP)..136
3 FREQ DUMP ...137
4 INTERESTING LOOP DETECTOR (ILD)...138

4.1 ILD Options.. 138
4.2 Header... 138
4.3 Loop Summary Table.. 139

5 METER: TARGET PLATFORM PERFORMANCE MEASUREMENT ...141
5.1 METER Flags... 142
5.2 START_PROFILING() and END_PROFILING().. 143
5.3 METER Result Files.. 143

6 SUIF TO VCG (S2VCG)..144

APPENDIX E. EFFICIENT PIPELINING OF NESTED LOOPS: UNROLL-AND-SQUASH, AN
INNOVATIVE COMPILER OPTIMIZATION TECHNIQUE USED IN THE NIMBLE COMPILER........ 146

1 INTRODUCTION...146
2 MOTIVATION...147
3 METHOD ..150

3.1 Requirements.. 150
3.2 Compiler Analysis and Optimization Techniques.. 150
3.3 Transformation .. 151
3.4 Algorithm Analysis.. 152

4 IMPLEMENTATION ..153
4.1 Target Architecture... 153

iv

4.2 The Nimble Compiler.. 154
5 EXPERIMENTAL RESULTS..155

5.1 Target Architecture Assumptions... 155
5.2 Benchmarks.. 156
5.3 Results and Analysis ... 156

6 RELATED WORK...161
7 CONCLUSIONS...162
REFERENCES..162

APPENDIX F. THE HARDWARE-SOFTWARE PARTITIONING APPROACH OF THE NIMBLE
COMPILER.. 165

APPENDIX G. XIMA - THE NIMBLE DATAPATH COMPILER .. 172

ABSTRACT ..172
1 INTRODUCTION...172
2 DATAPATH ARCHITECTURE FOR XILINX ..173

2.1 Garp Features.. 173
2.2 Xilinx Features... 174
2.3 Overall Architecture... 175

3 XILINX DATAPATH COMPILER (XIMA) ...180
3.1 Flow Graph Input Parse and Translate .. 181
3.2 Tree Collection .. 182
3.3 Mapping, Scheduling and Placement .. 182
3.4 Control Information Annotation ... 182
3.5 Module Generation... 183

4 SUMMARY ...187
5 REFERENCES..187

APPENDIX H. DOMAIN GENERATOR TUTORIAL FOR THE NIMBLE COMPILER PROJECT......... 188

1 INTRODUCTION...188
1.1 Background .. 188
1.2 Development Environment .. 188
1.3 Integration.. 188

2 DEVELOPING THE GENERATOR ..189
2.1 The Java Source Files .. 189

3 INTEGRATING THE GENERATOR TO XIMA ..193
3.1 Adding to "opcodes.h".. 193
3.2 Modifications to "opcodes.c" .. 193
3.3 Modifications to "cost.c".. 193

4 USING THE NEW DOMAIN GENERATOR ..194

APPENDIX I. SPECIFICATION FOR FPGA MACRO GENERATORS FOR THE NIMBLE COMPILER
PROJECT... 195

1 INTRODUCTION...195
1.1 Generator List and Operator Coverage .. 195
1.2 Intrinsic Operator to Generator Mapping .. 196
1.3 Invoking the Generators from the Command Line .. 197
1.4 Generator Cell Interface.. 198
1.5 Generator Area/Timing Information.. 198

2 INTRINSIC OPERATOR SPECIFICATION ..200
2.1 Generator: add .. 200
2.2 Generator: comp.. 201
2.3 Generator: div.. 203
2.4 Generator: logic.. 204
2.5 Generator: mul... 205
2.6 Generator: mux.. 206

v

2.7 Generator: neg... 207
2.8 Generator: reg ... 208
2.9 Generator: rem... 209
2.10 Generator: shift .. 210
2.11 Generator: sub... 211

3 GROUP 2 DOMAIN SPECIFIC FUNCTIONS...212
3.1 Generator: abs... 212
3.2 Generator: bytesel... 213
3.3 Generator: fir ... 214
3.4 Generator: parcnt ... 216
3.5 Generator: permute... 217
3.6 Generator: ram.. 218
3.7 Generator: rom.. 219
3.8 Generator: sbox... 220
3.9 Generator: sjg .. 222

APPENDIX J. FINAL TECHNICAL DELIVERABLES STATUS ... 224

1

1 Overview of the Nimble Compiler Project

The Nimble Compiler for Agile Hardware is designed to automatically compile C language
applications to embedded, agile hardware architectures. Agile hardware, or Agileware for short,
is defined simply as a mixed programmable RISC processor and a reconfigurable datapath co-
processor (or attached processor). A template of the Agileware architectures is shown in Figure
1. The goal of Agileware and Nimble Compiler is to accelerate an applications code over what
would be achievable using only the processor itself. This is achieved by getting more operator
parallelism and memory bandwidth with the configurable datapath than that normally
achievable with any programmable processor.

In this section, we first provide an overview of the Agileware architecture, which is the target of
the Nimble Compiler. We then describe the Nimble Compiler flow from a high level point of
view.

Reconfigurable
Datapath

(e.g. FPGA)

Embedded CPU

On chip
SRAM /
Caches

Figure 1. Agileware top-level architecture.

1.1 Introduction of Agileware Architectures

The basic architecture model defined by the term Agileware is depicted in Figure 1. Key to this
model, unlike most other reconfigurable computing architectures, is the availability of the full
memory hierarchy to the configurable datapath (DP) coprocessor. This takes the co-processor
out of the realm of a slave, register based accelerator into a class of a full-scale processor.
Additionally, option direct I/O can be handled for data reduction or generation that would not
normally be possible with a programmable solution. Finally, optional local memory either inside
or outside the datapath can be utilized by the compiler to assist in reducing main memory traffic.
Nominally, the best performance and cost can be gained by combining all of these elements onto
a single chip.

Currently, all the configurable datapath targets that the Nimble Compiler uses are defined out of
fine-grain, Xilinx LUT-like FPGA structures. An off-the-shelf commercial FPGA is not
designed to be a good datapath unit. This is due to the limited special long-line routing for
memory access, the lack of courser grained, higher-performance operators, and the real lack of
support for fast loading, compact (re)configuration bit-streams. Features like configurable

2

operators at specific locations and configurable routing are what can still be useful and exploited.
Better-designed, dedicated configurable datapaths are in development by many organizations
that will overcome the limitations of FPGA's. In lieu of having these special designs, the FPGA
implementation provides a test-bed to experiment with new architectural features before
committing to a more custom implementation and to show that real hardware can be targeted and
used to accelerate codes; even with all the limitations.

The biggest benefit of an Agileware unit is that the co-processor can be programmed to look like
a VLIW (heterogeneous operator parallelism), Vector parallel (SIMD or data parallel), or fine-
grain, systolic processor. Any of these forms can make use of a memory hierarchy that is also
configurable to include options of cache architectures, vector queues, and localized buffers. The
configurable datapath is register rich and uses direct connections between operators and
registers, thus offering somewhat unlimited registers with parallel access by every operator.

1.2 The Nimble Compiler Approach

Nimble operates by looking for inner loops that dominate the execution of the application. Such
loops, termed hardware kernels if realizable in the datapath, are retargeted to the datapath
coprocessor as a dynamically loadable configuration. Such targeting can be either explicitly
defined by the user or automatically detected by the compiler. In Phase 0, the compiler was
dumb and attempted to put every loop it could in hardware by default, whether efficient or not.
Phase 1 introduces profile-based automatic kernel selection that attempts to put only those loops
in hardware that are guaranteed to provide a benefit under the conditions presented.

For embedded DSP style code, our studies reconfirm that 90+% of the code execution time is
spent in a small (less than 20) number of inner loops. Thus, the user and compiler can focus on
optimizing a few areas of code where the most execution time is spent. Key to this is the
efficiency that can now be gained in the compilation process. With only 20 or less loops that
generally tend to be 20 to 50 source lines of code, the compiler can apply normally expensive,
non-polynomial algorithms in the optimization process.

So the goal of the user is to find loops implementable in the configurable datapath that will
accelerate the code. Figure 2 depicts the static loop-procedure hierarchy of an example
application (a simple wavelet image compression program). The loops are depicted as ovals and
the procedures as rectangles. System calls are depicted as filled-in rectangles – signifying that
further analysis and hierarchy is not available. The arcs represent the context that the loop or call
occurs in with their usually being a single root that represents the main procedure in C. The
nodes are scaled according to their relative code execution time in the original software
application for a given data set. (Note: this graph is from one of the analysis tools that will be
described more fully later on.) Loops that (after optimization, analysis and transformations) are
feasible to accelerate in the datapath are depicted with heavier weight ovals and termed selected
kernels. So the user, via the compiler, is trying to manipulate the code and compiler options to
get as many loops selected as possible to accelerate the application.

3

procedure

Loop

Figure 2: Example loop-procedure hierarchy graph with loop selection depicted.

Unlike traditional hardware / software codesign techniques, this approach is fairly deterministic
and thus achieves close to optimal results for most applications. The platform, once defined to
the compiler, is fixed in the amount and performance of resources. The number of operators,
number of registers, and amount of interconnect is fixed. The memory bandwidth, although
optimizable with configurable elements, is also fixed. Therefore, exact determination can be
made instead of gross guess-timates of hardware execution times, configuration times, and
tradeoff of space for performance.

Extracting maximum instruction level parallelism (ILP) and deep pipelining is the goal once a
loop kernel is identified. Today's quick prototype compiler performs only the most basic of
transformations to get a kernel working on the co-processor. Automatic and significant operator,
statement, and basic block parallelism and pipelining should eventually be achievable. This will
be through the application of VLIW and Vector Parallel style data dependency analysis, profile
analysis and optimization techniques on the code

Nimble does not define a strong style or programming model; not more than enforced on general
application code now. Instead, it works on existing, fully ISO/ANSI compliant C standard files
and tries to extract ILP and memory structures from the general specification. As in any
specification, good style for optimally targeting the specific architecture is always helpful. This
is especially true in trying to overcome near-term compiler limitations. But good style for this

4

compiler is more like the intended mathematical specification of the algorithm versus an
optimum, engineered and quick executing software implementation.

- extracted parallelism for scalar
and vector operations

- DSP parallel optimizations
- data dependency analysis
- for embedded processor

Parallel
Compiler Technology

- VLIW analysis techniques for ILP
 and predicate extraction

- code profiling on target
- quick synthesis for possible kernels
 - HW/SW interaction model

Auto HW / SW
Partitioning

- (Automated) Hierarchical
floorplanning and placement

- bit “agile”, runtime constant
optimizations

- bit serial, parallel,
 pipelinable versions

Generator
Libraries

- bit slice co-placement & scheduling
- behavioral operator selection
- boolean optimization on predicate
control or bit-slice modules only

Configurable
Datapath Synthesis

“ANSI” C
Specification

“ANSI” C
Specification

Architecture /
Runtime Support

Architecture /
Runtime Support

Target Architecture
Specification

Target Architecture
Specification

Figure 3. Nimble Compiler technology.

To achieve the automatic compilation of an application written in C on the mixed
hardware/software Agileware platforms, the Nimble Compile deploys an array of technologies
from various research fields that did not traditionally interact with each other. Figure 3 depicts
the different fields related to the Nimble effort, including:

§ Compiler technology: Traditional compiler technology has been mainly focusing on the
acceleration of software. In the Nimble project, we apply compiler technology not only to
accelerate software, but also to help improve hardware implementations. At the front end of
the compiler, Nimble applies compiler optimization techniques to extract maximum amount
of instruction-level parallelism from the source application. Data dependence analysis is also
performed. This step will facilitate the datapath synthesis process later on to achieve
maximum acceleration of the kernels running in hardware.

§ Automatic hardware/software partitioning : hardware/software partitioning is key in
deciding what to execute in software and what to execute in the reconfigurable datapath to
obtain best performance at the application level. This step bridges the front end and the back
end of the Nimble Compiler. Hardware/software partitioning has been studied by the
hardware/software co-design community, mainly targeting programmable CPUs coupled
with ASICs. For the Nimble project, we have introduced novel automatic hardware/software
partitioning algorithms targeting specifically mixed CPU and reconfigurable hardware. It

5

automatically evaluates the tradeoffs between software execution, hardware execution, and
reconfiguration and selects the best kernels to be implemented in the hardware.

§ Generator libraries: Macro generator libraries are developed to facilitate the datapath
synthesis process. Generator libraries are provided to support the full set of ANSI integer
operations. Additional domain-specific generations are provided to facilitate acceleration of
cryptographic, multimedia, as well as general computational functions.

§ Configurable datapath synthesis: Configurable datapath synthesis is required to map
selected hardware kernels on to the reconfigurable datapath (also referred to as FPGA). The
goal of the datapath compiler is to efficiently map the unscheduled data flow graph
description of the datapath to an FPGA. The involved steps include performing scheduling,
technology mapping, module generation, and datapath floorplanning. To leverage existing
datapath compiler technology and to quickly provide a prototype solution, the U.C. Berkeley
work on the Garp architecture, in particular, their datapath compiler tool Gama has been
selected as the starting framework. It is modified for both the Xilinx 4K series and Virtex
series FPGA's.

1.3 Top-Level Flow of the Nimble Compiler

C codeNimbleNimble

Embedded GCCEmbedded GCC

Executable Image to run
on Agileware platform

Runtime
API

Auto P & R
FPGA Vendor Tool

Auto P & R
FPGA Vendor Tool

FPGA bit stream

Xima DP Compiler
• module mapping
 & generation
• floorplanning
• scheduling & sequencer

Xima DP Compiler
• module mapping
 & generation
• floorplanning
• scheduling & sequencer

Pre-placed Netlist

Generator
Library

FF
LL
AA
MM
EE

Kernels as DFG

Agileware
Description
Language

C code

CHAI - C front-end Compiler
• profiling (perf., loop entry, path)
• analysis and visualization
• transformation and optimizations
• automatic HW/SW partition

CHAI - C front-end Compiler
• profiling (perf., loop entry, path)
• analysis and visualization
• transformation and optimizations
• automatic HW/SW partition

Figure 4. Nimble Compile top-level flow.

6

Given the approach and technology described in the previous section, the high level flow of the
Nimble Compiler is fairly apparent and is depicted in Figure 4. The compiler takes in any
ANSI/ISO standard C code compatible for the target embedded processor environment and
eventually puts out an executable image. For convenience, the compiler wraps up the execution
of the configurable datapath APR tools along with the embedded processor C compiler
environment. The compiler itself consists of two main pieces: the C Hardware and Instruction
(CHAI) Front-end compiler and the Xima datapath compiler back-end.

CHAI encompasses a C compiler, instrumented profiling tool, analysis and visualization tools,
optimizations, and the automatic HW/SW partitioner termed Kernel Selection (or KS). Xima
consists of a module mapping and generation, floorplaning and scheduling tool. The output of
Xima is a fully placed netlist implementing the original loop functionality. Once this is passed
through final routing and timing verification, the configuration is linked and loaded into the data
space of the C code as a compressed, initialized binary array. The original C code, optimized
and altered to reflect the code in kernels, is put back out as C code by Chai for final compilation
into an executable by the embedded processor C compiler. Features of the target architecture are
defined in libraries that retarget the compiler to a particular implementation. These libraries
consist of software, runtime libraries, datapath generator libraries, and the Agileware Description
Language (ADL).

Subprogram and task level parallelism is not inherent in the C language standard. Therefore, it is
not automatically detected, extracted or otherwise looked for in this compiler. Today's compiler
can be used to analyze and accelerate single tasks only. Other researchers' work on task level
parallelism specification and extraction could be incorporated, in general, as the topic is
somewhat orthogonal to the ILP extraction looked at here. The areas in the Nimble Compiler
that would be most affected by integrating the current ILP model with a new multi-tasking
specification would be in estimating software task performance, determining optimum
reconfigurations for multiple kernels, and understanding memory access patterns and
performance issues.

1.4 What Is Included in This Report and Supporting Documents

The rest of this report along with the supporting documents explains further technical
contributions and details regarding the Nimble Compiler. In our initial statement of work, the
Nimble project is divided into the following six major tasks:

1. Tool architecture and environment.

2. Nimble Compiler front end and software code generator.

3. Performance and capacity driven partitioner.

4. Datapath compiler back-end.

5. Functional Generator Libraries – research and prototyping.

6. Benchmarking and demonstration.

Section 2 is the key section of this report: it revolves around the above six tasks and addresses
the technical aspects of each task. Many of the technical areas are covered in separate reports in
the supporting documents. For these areas, we will only include a brief description and refer the
readers to the correspondent supporting documents.

7

Section 3 draws the final conclusions of the Nimble project..

The supporting documents are included as appendices to this report (Appendices A-M). Table 1
lists the information of each supporting document: the title, the appendix index, and the task (or
tasks) in original Statement of Work it corresponds to.

Note that Appendices A—J are included in Vol I of the Final Report, which is available for
public release. Appendices K—M are inlcuded in Vol II, which requires government only
distribution through DTIC.

Table 1. List of supporting documents included as appendices.

Appendix Report full title Task number in SOW

A Overview of the ACEV Environment Task 1

B A Comprehensive Prototyping-Platform for Hardware-
Software Co-Design

Task 1

C Porting RTEMS to the ACE Hardware Platform Task 1

D Profiling Tools and Result Viewers for the Nimble
Compiler Project

Tasks 2 & 3

E Efficient Pipelining of Nested Loops: Unroll-and-Squash,
an Innovative compiler Optimization Technique used in
the Nimble Compiler

Task 2.

F The Hardware-Software Partitioning Approach of the
Nimble Compiler

Task 3

G Xima - The Nimble Datapath Compiler Task 4

H Domain Generator Tutorial for the Nimble Compiler
Project

Task 5

I Specification for FPGA Macro Generators for the Nimble
Compiler Project

Task 5

J Final Technical Deliverables Status Tasks 1---6

Vol II K Agileware Description Language for the Nimble Compiler
Environment for Agile Hardware

Task 1

Vol II L Nimble Compiler Language Manual and Style Guide Tasks 1 & 2

Vol II M Final Benchmark Report for The Nimble Compiler
Environment for Agile Hardware

Task 6

8

2 Nimble Technologies

Through the Nimble Project, Synopsys Inc. and its partners aim to demonstrate a retargetable
design environment for Adaptive Computing Systems comprised of a processor tightly coupled
with a configurable logic array (referred to as Agile hardware, or Agileware in short). In our
initial statement of work, the Nimble project is divided into the following six major development
areas:

1. Tool architecture and environment

2. Nimble Compiler Front-End and SW Code Generator

3. Performance and Capacity Drive Partitioner

4. Datapath Compiler back-end

5. Functional Generator Library Research and Prototyping

6. Benchmarking and demonstration.

In this section, we will discuss our technical accomplishments in each of the above areas.

2.1 Task 1: Tool Architecture and Environment

We have finished the development of the complete Nimble Compiler Environment and targeted
it to multiple Agileware platforms including real hardware. Refer to Section 1 for an overview
of the Nimble Compiler Environment, the compilation flow, and the technological areas. For
Task 1, we have the following technical accomplishments:

§ Nimble infrastructure : Developed the complete Nimble environment, including the fully
functional, automatic Nimble Compiler, and the target platforms. (ACEV and ACEII
environment). The overview of Nimble Compiler environments was discussed in Section 1.
The subsequent subsections in Section 2 will provide more insight into the technical aspects
of the Nimble compiler.

§ Nimble target platforms : Section 2 focuses on the tool aspect of the Nimble compiler. We
have included two supporting documents “Overview of the ACEV Environment”
(Appendix A) and “A comprehensive prototyping platform for hardware-software co-
design” (Appendix B) that address one of the Nimble target platforms – ACEV. The ACEV
platform uses a real-time operating system (RTOS) named RTEMS. As suggested by it title,
“Porting RTEMS to the ACE hardware platform” (Appendix C) documents how we
have ported the RTEMS OS to the ACEV and ACEII platforms.

§ Information regarding the Garp architecture can be found in the publication by Callahan et.al
[3].

§ Function Generator Libraries: Function generator libraries have been developed to facilitate
the datapath synthesis process. Generator libraries are provided to support the full set of
ANSI integer operations. Addition domain-specific generations are provided to facilitate
acceleration of cryptographic, multimedia, as well as general computational functions. The
specification of the base generators and the domain specific generators is included in
document “Specification for FPGA macro generators for the Nimble Compiler Project”

9

(Appendix I). The Nimble compiler supports the computing models with generator libraries
and provides vendor neutral APIs to allow easy retageting of the generators. We have
dedicated a separate task to generators libraries research and prototyping (Task 5). Section
2.5 will explain this area in greater detail.

§ Nimble language guide : The “Nimble compiler language manual and style guide” is
included as Appendix L in Vol II of this report.

§ Agileware description language (ADL) and document : We have introduced Agileware
Description Language, which defines the required elements and parameters of the
architecture (such as the type of processor being used and the size of the reconfigurable
array, etc.), as well as the available optional elements such as instruction and date caches.
ADL allows parameterized and tailored compilation using Nimble compiler to various
Agileware architectures. Technical information regarding ADL can be found in Appendix K
(in Vol II of this report) “Agileware description language for the Nimble compiler
encironment for agile hardware”.

2.2 Task 2: Nimble Compiler Front-End and SW Code Generator

In this section, we focus on the C front-end and optimizer of the Nimble Compiler.

The Nimble Compiler front-end takes the C programs as input and performs compiler
optimization, analysis, and hardware/software partitioning to extract hardware kernels to be
implemented in the reconfigurable datapath, and to generate software code that executes in the
microprocessor. The front-end is built upon the SUIF Compiler framework [9]. In order to
achieve its goal, the front-end compiler performs the following functionality:

1. SUIF front-end preprocessing and optimizations : C programs are parsed and translated
into SUIF intermediate representations (IR). All subsequent steps will be performed on the
SUIF IR.

2. Hardware kernel identification: The Nimble front-end analyzes the source application and
identifies kernels for potential hardware implementation.

3. Profiling, analysis, and visualization: Profiling is performed to obtain program execution
paths and frequencies, loop iterations, performance estimation at various levels, and loop
traces etc. The profiling results can be used to drive compiler optimizations and hardware-
software partition. They also provide feedback to the designers and can be viewed via our
visualization tools.

4. Compiler optimizations . They are applied to improve both the hardware feasibility and the
performance of kernels.

5. Hardware-software partitioning : We also refer to hardware/software partitioning as
(hardware) kernel selection. This step bridges the front end and the back end of the Nimble
Compiler, and decides what portions of the application execute in hardware and what stay in
hardware.

Steps 1—4 of the Nimble front-end fall into the domain of Task 2. Step 1 is a trivial process and
we will not further discuss it. Step 5 is dedicated a separate task--Task 3 and will be addressed in
Section 2.3. We now look at steps 2-4 in greater detail.

10

2.2.1 Front-End Step 2: Hardware Kernel Identification

In this step we first extract all kernels and then analyze the hardware feasibility of these kernels.

Control flow graph, loop (kernel), and basic block extraction: The extraction process
establishes the internal data structures needed by the Nimble Compiler. For each function in the
original C programs, a control flow graph (CFG) is constructed. Figure 5 shows an example
CFG. Each node in the CFG corresponds to a basic block (BB), and is labeled by a number.
Edges represent the control flows of the basic blocks. A back edge (colored in pink in Figure 5)
in a CFG implies a loop. Since loops are the main targets of hardware implementation, it is
important for the Nimble front-end to identify them and label them as potential hardware
candidates.

Hardware-feasibility analysis: This step identifies what loops in the source programs are
suitable for hardware implementation. While Nimble supports all standard ANSI C features,
there are some features and constructs are not supported in the hardware and need to be
implemented in the microprocessor. The non-hardware acceleratable features include:

§ Subprogram calls that are not inlined or inlineable (such as recursive procedures).

§ Inner loop entries when considering the outer loop for hardware.

§ Float/double type arithmetic and relational operators (non-integral types).

§ Bit field specifiers in structures.

§ Variable multipliers; divide and modulus (not available in the GARP target, inefficient
in the ACEv, not available except constant multiplier in the ACE4k).

Feasibility analysis is first done for each basic block in a loop (kernel). In the example of Figure
5, the feasible basic blocks are labeled in green. A kernel can be fully implemented in hardware
if all of its basic blocks are feasible. If it contains infeasible basic blocks, it can still be partially
implemented in hardware as long as it contains feasible paths from loop entry to loop exit. When
the program needs to execute an infeasible path, an exceptional exit is created so that the
program can exit the hardware and continue the execution of the infeasible path in the software.

The above process of the identifying and extracting hardware kernels is thoroughly discussed in
the supporting document “The Nimble Compiler Language Manual and Style Guide”
(Appendix L in Vol II) and will not be repeated here.

11

Figure 5. An example control flow graph (CFG).

2.2.2 Front-End Step 3: Profiling, Analysis and Visualization

Nimble performs automatic compiler transformations to improve application performance,
followed by automatic hardware-software partitioning of an application onto the target platform.
In order to decide what transformations to perform and what kernels to implement in hardware in
order to achieve maximum performance, accurate performance profiling and analysis is a must.
It is also needed as an important feedback to the users, to help analyze performance of different
part of the application, identify performance bottleneck, and see if the final design satisfy the
performance requirements. We have designed a complete solution to use in the Nimble flow. Our
profiling, analysis and visualization tools (referred to as the profiling framework) provide the
capability of modeling the overall software, hardware and reconfiguration time in one
comprehensive framework.

The Nimble profiling framework has the following characteristics:

12

§ It can perform profiling at different granularities: application level, functional level, loop
level and basic block level.

§ It can be used to estimate software performance only, but more importantly it can be used to
model the overall application timing which is composed by software time, hardware time,
hardware/software interface time, and (re)configuration time.

§ It supports both estimation-based and measurement-based performance analysis techniques,
since they can be required at different point of the Nimble compile flow. For example, the
estimation-based approach is used during design space exploration of the hardware/software
partitioner, and the measurement-based one is used after Nimble generates the final design to
verify the satisfaction of performance constraints.

§ It integrates performance, path, and trace profiling techniques for fast yet accurate results.

§ It performs source-level code instrumentation during profiling and is independent of the
target platform. Therefore, it can be easily retargeted to multiple Agileware platforms. Even
though the profiling technique is developed to use with the Nimble Compiler, it can be either
used alone purely as an analysis tool, or integrated into other system-level design flows.

The profiling framework consists of the following tools:

§ Meter: performance measurement on target platform.

§ HALT path profiling : path and frequency profiling tool.

§ Loop entry trace profiling (LEP): records and compresses loop entry trace to infer
configuration frequencies.

§ Interesting loop detection (ILD): analysis and reporting tool for performance data.

§ Loop-procedure hierarchy graph (LH): visualization of the loop-procedure hierarchy
graph.

§ S2vcg: visualization of control flow graph and basic blocks.

Figure 6 shows the flow of the whole Nimble profiling framework, including both the
estimation-based (left dashed box) and the measurement-based (right dashed box) flows.
Supporting document “Profiling Tools and Result Viewers for the Nimble Compiler Project”
(Appendix D) describes the details and usage of all the Nimble profiling tools. In this report, we
will describe some technical rationales for Meter, LEP and HALT. Please refer to Appendix D
for details of other profiling tools.

13

Profiling run
on desktop

Instrumented
executable

Pre-processing

Path, trace
instrumentation

Path, frequency,
trace results

Measurement-based
instrumentation

Quick datapath
Synthesis

Nimble Compile
(w/ user-spec or auto
HW/SW partition)

Profiling run on
target platform

IR

C code User inputs

Analysis & visualization

HW timing

Measured
timing dataILD LH s2vcg

LEP

Estimation-based Meter

HALT

Figure 6. The Nimble profiling framework.

A. Meter: measurement-based performance profiling

The measurement-based approach inserts probing points to a program to capture the actual clock
while the program is running. Since the overhead of each inserted clock-capture code can be very
small (several to ten of clock cycles) compared to application execution time, this approach can
yield accurate results when it is used to measure application level performance. It is also possible
to use it to measure procedure, loop level performance. However, the result accuracy will not be
ideal because inserting too many probing points in critical part of the code can significantly alter
program execution behavior by affecting compiler optimizations, register allocation at compile
time, and at run time, altering the pipeline and cache behaviors.

There are limitations to the use of the measurement-based technique by a design automation tool
such as Nimble due to the size of the large design space. For the same source application,
Nimble needs to explore many different hardware/software partitioning possibilities, different
hardware and software implementations of the same kernel. Measurement is only for one design
implementation. It is impossible to measure the performance of all these variations. Therefore,
we only use this technique to verify the performance constraints for the final design and to
validate the results of the estimation-based approach.

Inside the dashed box on the right hand side in Figure 6 is the Meter flow. C programs are
translated into an intermediate representation (IR), the IR is then inserted with certain probing
points based on user specifications. The tool provides a set of flexible options to allow users to
select what to measure (application, any combinations of loops etc). The instrumented IR is then

14

translated back to C and compiled for the target platform using the Nimble Compile flow, with
the hardware/software partition that the user is interested in measuring (could be user specified
or use the automatic Nimble selection). The executable then runs on the target platform with
user-provided inputs and captures timing information for the instrumented points.

B. LEP: loop entry-trace profiling

When a hardware loop is entered for the first time, it needs to be configured into the FPGA. If it
is entered again before being overwritten by another loop, it does not require reconfiguration. To
compute configuration cost, we need to know the exact runtime sequence of all hardware
candidate loops (i.g. the entries to these loops). Loop entry trace profiling (LEP) identifies and
instruments loop entries to generate a trace. Because the trace can be potentially huge, (encoding
4 frames using standard MPEG2 generates ~200M bytes of loop entry trace,) LEP incorporates
an online compression scheme to encode the trace. Loop trace compression not only saves
storage space, but more importantly, the compact representation allows fast traversing of the
trace in later steps of the algorithm.

The example in Figure 7 illustrates a high-level control flow of a code segment. Nodes A—E are
inner-most loops. E and D, and C and B are nested in two more layers of loops. The original
trace is compared with the compressed trace, in which repeated patterns are extracted and the
numbers of repeats are recorded. For the MPEG-2 encoding example, the trace size is reduced to
several Kbytes after compression.

E

D

C

B

Original trace
A
EDEDED… CBCBCB…
EDED… CBCB …
EDED… CBCB…

Compressed trace
(A) 1
(ED) 64 (CB) 64
(ED) 32 (CB) 32
(ED) 16 (CB) 16

A

64, 32, 16

64, 32, 16

3

Iteration count

Figure 7. Loop entry trace example.

C. HALT Path profiling

Program path information is needed to calculate basic block frequency and loop iteration counts.
We used the HALT (the Harvard Atom-Like Tools) [8] techniques developed by Young and
Smith to instrument branches in the program, and thus infer paths. We only record path up to the
feedback edge (loop edge) as detected by our analysis. Figure 8 shows the control flow graph of

15

a loop example. Nodes A-G are basic blocks inside the loop. It is obvious that there are four
distinct paths inside the loop (without counting the loop feedback edge). Instrumentation is done
to record the frequencies of these paths. Suppose the results of the path frequencies are as shown
in Figure 8. The basic block frequencies can then be inferred from the path frequencies by
summing the counts of all the appearances of each basic block.

A

B C

D

F

G

E

4 distinct paths Frequencies
ABDEG 10
ABDFG 20
ACDEG 30
ACDFG 40

Basic blocks Frequencies
A 100
B 30
C 70
D 100
E 40
F 60
G 100

Figure 8. Control flow graph of a loop example, and the correspondent path profiling
results.

Path information is not only required for estimating total execution frequencies of basic blocks,
but also used, when in mixed hardware / software execution, to estimate a basic block’s
hardware and software frequencies respectively. Figure 9 shows the same loop as in Figure 8.
Suppose the implementation is to keep basic block B in software, because it is not feasible for
hardware (say it contains a printf), and the rest of the basic blocks are implemented in hardware.
When the program enters the loop, it will first enter hardware. But, if it takes a path containing
block B (say in paths BDEG and BDFG), then the program exits hardware into software and
finishes the rest of the loop iteration in software to avoid the overhead of excessive context
switching. Hardware and software frequencies for the basic blocks are calculated as shown in
Figure 9. Path information is essential in the design space exploration process since we need to
evaluate multiple hardware/software partitions for each loop.

16

A

B C

D

F

G

E
Basic blocks HW freq SW freq

A 100 0
B 0 30
C 70 0
D 70 30
E 30 10
F 40 20
G 70 30

4 distinct paths Frequencies
ABDEG 10
ABDFG 20
ACDEG 30
ACDFG 40

HW
infeasible

block

Figure 9. Hardware and software frequencies inferred from path profiling results.

2.2.3 Front-end Step 4: Compiler optimizations

Nimble applies compiler optimizations to improve both the hardware feasibility and the
performance of candidate kernels. We have implemented conventional compiler transformation
techniques as well as developed novel techniques such as unroll-and-squash. “Nimble Compiler
Language Manual and Style Guide” (Appendix L in Vol II) describes how to use compiler
transformation in the Nimble environment. Here, we list some of the most useful transformations
we have implemented.

§ Procedure inlining: Procedure inlining enables more kernels to become feasible for
hardware implementation. We have developed an inlining tool (a SUIF pass) that can not
only support user manually specified inlining, but also can automatically detect what
function call instances to inline in order to achieve maximum hardware feasibility. The
Nimble inliner is run as a preprocessing pass before profiling, since it may dramatically alter
the program and change the profiling outcome.

§ Strength reduction: Strength reduction replaces some operations with reduced strength
operations of equal functionality where possible. Since shifts are free (in terms of both time
and area) in many reconfigurable datapath (for example, the Xilinx 4K and Virtex FPGAs),
it is possible to replace i*c where i is an induction variable and c is a power-of-2 constant
with a shift operation.

§ Scalarization: Scalarization moves array index computation and array memory references
out of loops, and therefore, can significantly improve loop performance. We developed a
scalarization pass based on the SUIF dependence analysis. It is shown that this automatic
scalarization pass can produce result quality close to that of the manual scalarization by a
designer.

17

§ Loop unrolling : Loop unrolling lets us directly exploit additional capacity on the FPGA by
increasing potential instruction level parallelism. The scheduler in our datapath compiler will
utilize any available operator parallelism that is exposed by unrolling.

§ Pipelining: Pipelining is superior to loop unrolling for at least two reasons. First, there are no
inter-iteration boundaries. Unrolling still loses all available overlap every few iterations.
Second, pipelining has the potential of much higher gate utilization. A pipeline with k stages
has as much asymptotic parallelism as k unrolled loops but without using nearly as many
extra CLBs. The Nimble Pipelining technique has demonstrated up to 16x speedup on simple
contrived loop, 4x speedup on real kernel extracted from Versatility benchmark, and 2x
overall speedup at application level for Versatility.

§ Unroll-and-squash: We developed a novel method for mapping nested loops into hardware
and pipelining them efficiently, named unroll-and-squash. The technique achieves fine-grain
parallelism even on strong intra- and inter-iteration data-dependent inner loops and, by
economically sharing resources, improves performance at the expense of a small amount of
additional area. Unroll and squash is implemented within the Nimble Compiler environment
and its performance was evaluated on several signal-processing and cryptography
benchmarks. The method achieves up to 2X increase in the area efficiency compared to the
best known optimization techniques. Unroll and squash is extensive discussed in this
supporting document “Efficient Pipelining of Nested Loops: Unroll-and-Squash, an
Innovative Compiler Optimization Technique used in the Nimble Compiler” (Appendix
E). Some results of applying this transformation to some benchmarks are included in “Final
benchmark report for the Nimble compiler environment for agile hardware” (Appendix
M in Vol II).

2.3 Task 3: Performance and Capacity Drive Partitioner

A key component of the Nimble environment is the automatic hardware/software partitioner that
performs fine-grained partitioning (at loop and basic-block levels) of an application to execute
on the combined CPU and reconfigurable datapath. The hardware/software partitioner considers
the tradeoffs between performance and capacity (area) and optimizes the global application
performance, including the software and hardware execution times, communication time and
datapath reconfiguration time. Extensive benchmarking on real applications shows that our
partitioning approach is effective in rapidly finding close to optimal solutions.

Research efforts in co-design mainly dealt with the conventional embedded hardware/software
architectures containing ASICs. However, the partitioning problem for architectures containing
reconfigurable FPGAs has a different requirement: it demands a two-dimensional partitioning
strategy, in both spatial and temporal domains, while the conventional partitioning involves
only spatial partitioning. Here, spatial partitioning refers to physical implementation of different
functionality within different areas of the hardware resource. For dynamically reconfigurable
architectures, besides spatial partitioning, the partitioning algorithm needs to perform temporal
partitioning, meaning that the FPGA can be reconfigured at various phases of the program
execution to implement different functionality.

The Nimble hardware/software partitioning approach focuses on the temporal partitioning
aspect. The input to the algorithm is a set of candidate loops for hardware (termed kernels) that

18

have been extracted from the source application. Each loop has a software version and one or
more hardware versions that represent different delay and area tradeoffs. The partitioning
algorithm selects which loops to implement in the FPGA, and which hardware version of each
loop should be used to achieve the highest application-level performance. This algorithm fulfills
all the requirements posted in the initial statement of work and beyond:

§ The partitioner is driven by performance and capacity. Partitioning must be guided by
various forms of profiling information to accurately assess the tradeoffs between hardware
and software implementations, and configurations. We not only developed the
comprehensive Nimble profiling framework (see Section 2.2.2), but also built interfaces to
seamlessly integrate the profiling framework and its results to be used by the partitioning
algorithm. The profiling tools have been explained in Section 2.2.2 and Appendix D.

§ The partitioning algorithm is fully parameterizable. Agileware Description Language (ADL)
(see Appendix K in Vol II) is used to describe important parameters and characteristics of
the target platform. The partitioner takes the ADL specification as input and generates
customized partition for the particular application running on the target platform.

§ The partitioner allows user-specified partition and still finds optimal (or near optimal)
partitions for the rest of the program under the user specification. This capability can be used
to incrementally evaluate various partitions before the user settles on the final result. Since
the partitioner is closely coupled with the Nimble profiling and reporting tools, it is very
easy for the user to compare different partitions in terms of quality of result.

• Our partitioning algorithm effectively captures the dynamic reconfiguration costs. This is
difficult as the number of reconfigurations for one kernel depends on which other kernels
may go into the hardware. This is one of the first efforts to efficiently model dynamic
reconfiguration cost in automatic hardware/software partitioning.

• The algorithm integrates compiler optimizations and hardware design space exploration into
the hardware/software partitioning process. Compiler optimizations are applied to kernels
before partitioning to generate multiple hardware design choices for each kernel. The
algorithm then integrates all the hardware choices into its design space exploration process.

We published a paper describing the partitioning algorithm at the 37th Design Automation
Conference in June 2000 [1]. Please refer to the paper (titled “The hardware-software
partitioning approach of the Nimble compiler”, included as Appendix F) for technical details
and experimental results of the algorithm.

2.4 Task 4: Datapath Compiler Back-end

For a prototype environment for the Nimble Compiler, this project initially focused on providing
a compiler for the reconfigurable TSI-Telsys ACE II board. The board includes a MicroSparc,
two Xilinx XC4085XL devices, and dedicated SRAM and DRAM. As part of the Garp compiler
developed at U.C. Berkeley is the datapath compiler named “Gama” which performs the module
mapping, scheduling, and placement of the datapath portions of programs to the reconfigurable
array of the Garp architecture. A restricted version, gamax, providing limited technology
mapping support for the Xilinx 4000 series FPGAs, was developed in the initial phase of the
project. This work leveraged much of the technology from the Garp datapath compiler.

19

The current Xilinx datapath compiler known as Xima, further improved upon gamax by
providing full technology mapping for integer ANSI C and for some domain-specific functions,
with an extensible and isolated generator library. It also included target support for the Virtex
1000 series parts, on a ADM-XRC daughter card mounted on TSI-Telsys ACE I boards. Within
the context of the Nimble Compiler, the XC4085XL / ACE II combination is referred to as the
"ace" target, and the Virtex 1000 / ACE I combination is referred to as the "acev" target.

The input to Xima is an unscheduled dataflow graph (in a format known as "AFL"), consisting of
processing nodes and data (or control) communication edges. The output consists of:

§ A ".ro" file, containing symbolic and other information on the datapath rows.

§ A ".xnf" file, which is the datapath netlist.

§ ".edn" files for each operator module required by the datapath.

The base Xima is enhanced with functional generator libraries (see Section 2.5, Task 5), and
provides quick synthesis results to the hardware/software partitioning tool.

The document “Xima – The Nimble Datapath Compiler” (Appendix G) describes the Xima
datapath architecture framework and other technical details.

2.5 Task 5: Functional Generator Library Research and Prototyping

 The Functional Generator Library task was mainly done at Lockheed Martin ATL with
collaboration from Synopsys Inc.

Macro functional generator libraries are developed to facilitate the datapath synthesis process.
Generator libraries are provided to support the full set of ANSI integer operations. Additional
domain-specific generators are provided to facilitate acceleration of cryptographic, multimedia,
as well as general computational functions. Table 2 lists all generators for the intrinsic integer
operations. Table 3 lists the generators for domain-specific operations.

20

Table 2. Functional generators supporting intrinsic operations.

Operator Description

add Binary Adder (+)

comp Compare function (<, <=, >, >=, ==, !=)

div Binary Divider (/)

logic Up to 4-input logic specified by table (&, |, ~, ^, &&, ||, !, ^^, ?)

mul Multiplier (*)

mux Two-to-one registered multiplexor (live variables)

neg Negate unary operator (-)

reg Register (for memory address, load, store, inputs, patches)

rem Remainder (%)

shift Shifter with variable shift count (<<, >>)

sub Subtractor (-)

Nimble has shown signification performance gain with domain-specific generators. For example,
in the DES encryption application, an impressive speedup over software-only solutions of up to
400x was achieved using several domain-specific generators.

We have included two supporting documents regarding generator libraries along with this report.
One document “Domain Generator Tutorial for the Nimble Compiler Project” (Appendix
H) is a tutorial that documents the process of creating a new domain generator, integrating it, and
using it within the Nimble Compiler framework. The ability to create and add custom domain
generators to the Nimble Compiler allows the user provides a quick way to develop a digital
circuit and then test its functionality by calling it out in a C program. Especially critical portions
of a program can be custom implemented in hardware, and then simply invoked by a function
call. The convention for function name is to append "nimble_" to the beginning of the generator
name. The document “Specification for FPGA Macro Generators for the Nimble Compiler
Project” (Appendix I) describes how to use all the generators implemented in Nimble (see
Table 2 and Table 3), and for each generator, a complete specification including command-line
generation, generator instantiation, operation supported, implementation, interface, and any
special options.

21

Table 3. Domain-specific functional generators.

Operator Description

abs Fixed point absolute value: (a>0) ? a : -a

bytesel Friendly endian byte select: a >> ((3-byte&3)*8)&255

fir FIR filter

parcnt A 32-bit counter which skips over parity (LSb) bits of each byte

permute General bit permute, set, and clear

ram CLB-based RAM (not in external memory)

rom CLB-based ROM

sbox The DES encryption sbox computation with “P” permute

sjg The skipjack encryption “G” function

2.6 Task 6: Benchmarking and Demonstrations (application development using
tools)

The Nimble benchmarking process is crucial for evaluating both Agileware platforms and the
Nimble Compiler itself. It helps us to understand how our target applications— i.e., embedded
DSP applications — behave on the Agile Hardware architectures that are the target of
compilation, and how the Nimble Compiler handles a wide range of codes. More specifically, we
wanted to achieve the following objectives:

§ To show that the compiler and the architecture can support a wide range of general purpose,
off-the-shelf applications and not be limited to one or more particular algorithm sets. There
are two keywords here: general-purpose, and off-the-shelf. To demonstrate Nimble’s general
utility, we need to collect benchmarks from various application areas.

§ To demonstrate that the Nimble Compiler provides a better compilation model and faster
compilation speed than existing VLIW/DSP processors. While conventional tools for
hardware synthesis take hours or even days to generate results, the Nimble compiler aims to
emulate a more software-like compilation process: The user performs incremental code
revisions and the compiler generates executables in minutes instead of hours or days.

§ To verify that using Nimble for Agileware architectures can achieve higher performance than
existing solutions, such as general-purpose CPUs or DSPs.

§ Last, but not least, to baseline the major milestones in our 3-year development efforts and to
show the improvement gained through different development phases.

It is important for our project to not only benchmark the Nimble compiler itself, but also to
benchmark the targeted Agileware platforms against other comparable solutions. To achieve the
above goals, we have selected a representative set of applications to form the Nimble benchmark
suite. We have run these applications on Agileware platforms, using executables automatically
compiled using the Nimble Compiler, or hand-optimized for the datapath for comparison

22

purposes. We have also run some of the applications on other commercially available DSPs such
as the C6x processor from TI, and compared the results on these platforms to those on
Agileware.

To demonstrate the Nimble Compiler’s capability of working with a wide range of off-the-shelf
applications, we have built the benchmark suite by selectively using applications from different
sources, including:

§ The ACS benchmark suite, developed by Honeywell Technology Center. This suite consists
of a wide range of applications, from CAD algorithms to image processing.

§ Lockheed Martin ATL INFOSEC cryptography benchmarks. The main focus here is state-of-
art cryptography algorithms.

§ DSPStone benchmark suite from Aachen University, Germany.

§ UCLA MediaBench suite.

§ SPEC’95 benchmarks.

The above benchmark suites consist of a large number of applications in various application
fields, including image processing, DSP, CAD algorithms, cryptography, games etc.

The results of our benchmarking efforts are documented in an extensive report: “Final
benchmark report of the Nimble compiler environment for agile hardware” (Appendix M
in Vol II). At past reviews and PI meetings, we have given live demonstrations of some of the
above benchmarks on real hardware (ACEII and ACEV platforms).

In the Final Benchmark Report, we presented our benchmarking results and analysis for 18
applications in various domains. For each application, we presented detailed analysis both at the
application and at the kernel level. Various metrics such as performance and area are obtained
through both profiling (estimation based) and actual measurements. We made comparisons
among different implementations include the software only ones and mixed hardware and
software ones. We also compared across different platforms including both Agileware platforms
such as Garp and ACEV, as well as a competitive commercial platform C6X.

During benchmarking, all the applications were required to pass the desktop step before we even
included them as part of the suite. Table 4 summarizes the status of these benchmarks on the two
Agileware platforms. We were able to use Nimble to profile, synthesize and compile all these
applications on both Garp and ACEV. However, for some application, we failed to obtain the
run time data on Garp or ACEV. On Garp, because we were using a simulator to obtain run time
data, if an application has a very long run time, it may not finish simulation in days or even
weeks. This is noted in the table as “too slow”. On ACEV, there is a very limited amount of
memory available (about 4M) and some programs’ memory requirement exceeds this amount.
This is noted in the table as “requires too much memory”.

Refer to Appendix M in Vol II for complete benchmark results on these 18 applications.

23

Table 4. Nimble benchmarking status.

Garp ACEVBenchmark
name Profiling,

synthesis
&
compile

SW-
only
run

HW/SW
(auto)
run

Profiling,
synthesis,
& compile

SW-only
run

HW/SW
(manual) run

Versatility Ok Ok Ok Ok Ok Ok

CFAR Ok Too slow Requires too much memory

Skipjack Ok Ok Ok Ok Ok Ok

DES encrypt Ok Ok Ok Ok Ok Ok

TwoFish Ok Too slow Ok Ok No HW kernel

DSP Stone
ADPCM

Ok Ok Ok Ok Ok Ok

MediaBench
ADPCM

Ok Ok Ok Ok Ok Ok

G721 encode Ok Too slow Ok Ok Ok

G721 decode Ok Too slow Ok Ok Ok

MPEG2 encoder
(revised)

Ok Too slow Requires too much memory

MPEG2 decoder Ok Too slow Ok Ok No kernel with
speedup

JPEG encoder Ok Too slow Ok Ok No kernel with
speedup

JPEG decoder Ok Too slow Ok Ok No kernel with
speedup

GSM Ok Too slow Requires too much memory

UNEPIC Ok Too slow Requires too much memory

PEGWIT Ok Too slow Requires too much memory

Spec’95 GO Ok Too slow Ok Ok No kernel with
speedup

Note:

The word “Ok” means we have data for the corresponding running mode. Comments other than
“Ok” explain why we did not have data for the corresponding running mode.

24

3 Project Conclusions

Through extensive benchmarking, we applied the Nimble Compiler to a wide array of
applications and successfully targeted real hardware (ACEV platforms). We draw the following
conclusions for the Nimble Project:

1. The Nimble compiler provides a viable framework for compiling a wide range of general-
purpose applications written in the high-level language C automatically onto Agileware
platforms. Nimble supports the full standard ANSI C, not a subset or superset of the C
language. In terms of compilations, Nimble can be applied not just on one or several
particular types of codes, but the general-purpose applications, even though some application
types such as multimedia and cryptography may have higher performance gain potential on
Nimble than others.

2. Nimble allows fast and retargetable compilations. Nimble uses a compilation model is
similar to that of the software, which allows incremental code revisions and finishes
compilation to mixed hardware and software in minutes.

3. Nimble framework integrates sophisticated profiling mechanisms into the compilation
process which enables the compiler to make intelligent decisions (such as hardware kernel
selection) automatically.

4. Using the Nimble compiler on Agileware platforms demonstrated great performance
potentials. For most applications, we were able to obtain higher performance than software-
only solutions. Some achieved better results than state-of-the-art DSP processor C6X. For
applications like DES Key Search, using domain-specific generators, Nimble generated
tremendous speedup (up to 400X over software solution) still with fast, automatic, and
software-like compilation.

Because of the unavailability of a tailored commercial Agileware platform, much of Nimble’s
potential for generating high performance is hard to demonstrate. Even though ACEV is a real
platform, its design has many flaws (as we have discussed earlier) and it is not an ideal
implementation. However, being a research prototype, Nimble provides a valuable platform for
doing further research and development work in reconfigurable computing.

25

4 References

[1] Yanbing Li et.al, "Hardware-software partitioning of embedded reconfigurable
architectures'', in Proceedings, 37th Design Automation Conference (DAC), June 2000.

[2] T. J. Callahan and J. Wawrzynek, “Instruction level parallelism for reconfigurable
computing,” Proc. 8th Intl. Workshop on Field-Programmable Logic and Applications,
September 1998.

[3] T. J. Callahan, John R. Hauser, and John Wawrzynek, ``The Garp Architecture and C
Compiler'', IEEE Computer, April 2000.

[4] D. Petkov, et.al, “Efficient pipelining of nested loops: unroll-and-squash”, submitted for
publication.

[5] S. Kumar et.al, “A Benchmark Suite for Evaluating Configurable Computing Systems -
Status, Reflections, and Future Directions,” in proceedings, FPGA 2000 - Eighth
International Symposium on Field-Programmable Gate Arrays, February 10-11, 2000,
Monterey, California.

[6] TSI Telsys, “ACE2 Card Manual”, 1998.

[7] Richard Goering, “Compiler project marks Synopsys' step into post-ASIC world”, EE Times,
August 28, 2000.

[8] Cliff Young, “The Harvard Atom-line Tool (HALT) Manusl”,
http://www.eecs.harvard.edu/hube/software/v112/halt2.html/.

[9] The SUIF Compiler Group, http://suif.stanford.edu/.

26

Appendix A. Overview of the ACEV Environment

1 Introduction

The ACEV platform combines a conventional processor and
a reconfigurable component to provide a complete environ-
ment independent of the host computer. On one hand, these
features make it suitable as an prototyping environment for
hardware-software Co-design. On the other hand, though,
it can be considered as an emulator for a hybrid processor
that combines both fixed and reconfigurable components to
flexibly adapt to the applications.

This document is intended to familiarize potential users
with the fundamentals of the platform and point to more
detailed documentation for further reference. With the ex-
ception of [14], all of the documents cited in the bibliography
are provided in soft-copy form (PDF files).

2 System Architecture

2.1 Hardware

The ACEV hardware combines two key components: The
ACEcard, a PCI expansion card manufactured by TSI-TelSys1

supplies the host interface, the conventional processor (called
Embedded Processor Subsystem, EPS) and its main mem-
ory [2]. An ADM-XRC PMC card [6] attaches to this board
as a daughter-card and provides the FPGA-based reconfig-
urable processing unit (RPU). Both PCI and i960-like busses
are used and interconnected using Bus Interface Units (BIU).
Figure 1 shows the combined architecture.

For purposes of the ACEV hardware, only a subset of the
entire hardware available on both cards comes into play.
For example, the ACEcard only acts as a carrier for the

1 ... which became Lavalogic and was recently acquired by Xilinx.

27

PCI Board

PMC Card

RPU

EPS

XCV
1000

H
o

st

PLX

PLX

PLX

uSPARC
IIep

64
M

B
 D

R
A

M

i960

i960

PCI

U
se

r
I/O

4kx36b FIFO 4kx36b FIFO

1 MB Flash

256kx32b256kx32b

PCI

XC
6264

XC
6264

256kx36b

256kx36b

256kx36b

256kx36b

Figure 1: ACEcard combined with ADM-XRC daughter-board

28

ADM-XRC and provides a SUN microSPARC-IIep processor
as embedded CPU. The reconfigurable resources present on
the ACEcard (two Xilinx XC6264 FPGAs with associated
memories) are ignored in favor of the more recent Xilinx
XCV1000 FPGA supplied by the ADM-XRC card.

Thus, the ACEV hardware can be simplified down to the
structure shown in Figure 2

RCBIUCPU

64MB
DRAM

SUN

IIep
microSPARC

P
L

X
90

80 Xilinx
Virtex

XCV1000

P
C

I

i960

SRAM

256Kx36b

256Kx36b

256Kx36b

256Kx36b

Figure 2: Simplified view of ACEV hardware

The key components are the

EPS : consisting of the microSPARC-IIep processor [5] and
the associated 64MB of DRAM.

RPU : consisting of a Xilinx XCV1000BG560-3 Virtex-type
FPGA [8] coupled to 4MB of No-Bus-Turnaround mem-
ory organized as four independent banks of 256kx36b
GSI GS880Z36T-100 [9] chips.

BIU : a PLX9080 PCI I/O Accelerator [10] that has the FPGA
attached to a simple-to-implement, yet fast i960-like
bus (clock programmable from 25MHz-40MHz, sepa-
rate 32b data and 24b address lines). The BIU bi-
directionally translates this protocol to the standard
33MHz 32b PCI bus that is available on the EPS.

Minor components include firmware in Flash memory both
on the EPS and RPU as well as a programmable clock gen-
erator for the RPU.

29

2.2 Software

Hardware is only one half of a complete system. On the
software side, we have three major interacting modules.

virtual
serial ports

mapped
memory

virtual
serial ports

I/O Client

User Application

Host Filesystem

PCIPCI i960
PLX PLX

RTEMS
API

POSIX
API

API
ACEV

Host Drivers

rtemsserver
RTEMS Kernel

Figure 3: ACEV Software Architecture

Figure 3 shows the relationship between the different com-
ponents described below.

2.2.1 ACE Firmware and Host Drivers

The boot firmware of the ACEcard (held in 1MB of Flash
memory) provides basic services such as initial hardware
setup and essential exception handling (e.g., processing the
register window overflow/underflow traps common to the
SPARC architecture [14]).

In addition, it also interacts with the host-side device drivers
to allow the host-computer access to the EPS hardware us-
ing device files in the host file-system.

� The DRAM space of the EPS is accessed via the host’s
/dev/ace0dram device. Reading or writing to this
file on the host reads or writes the data from/to the
DRAM. The file offset (starting at 0, changeable us-
ing the C library fseek() and lseek() functions) de-
termines the target address in DRAM. E.g., to write
1KB of data from the binary file test.bin to the EPS
DRAM from address 16384 upwards, the command

30

dd bs=1k count=1 seek=16 <test.bin >/dev/ace0dram

could be issued. Conversely, the command

dd bs=1k count=2 skip=8 </dev/ace0dram >data.bin

reads 2KB of data starting at DRAM address 8192 into
the file data.bin on the host. These transfers use
PCI block transfers and are reasonably fast for larger
blocks.

� The firmware and the host drivers cooperate to simu-
late four bidirectional virtual serial ports (VSP). One
of these is reserved for the system, two are user-definable
(but see Section 2.2.2), and the final one is hard-allocated
to the GDB remote debugging protocol (Section 8.2).
On the host side, the user-defined ports appear as the
device files /dev/ace0ttya and /dev/ace0ttyb . Com-
munication is established using a standard terminal
program such as the Unix tip command. E.g., the
command

acehost$ tip /dev/ace0ttya
connected
... interaction ...
˜.
acehost$

connects the terminal program to /dev/ace0ttya and
sends/receives single characters to/to the EPS. When
the sequence ‘˜. ’ is typed on the host, the terminal pro-
gram exits.

Since the VSPs can also be manipulated by software,
they can also act as low-bandwidth communication chan-
nels between host and EPS programs (the latencies
involved for the single-character transfers are consid-
erable). Additionally, a write to a VSP is the only way
for the EPS to send an asynchronous signal to the host
(e.g., when an EPS interrupt occurred).

2.2.2 RTEMS

The Real-Time Executive for Multi-processor Systems (RTEMS)
[12] [13] sits on top of the firmware and drivers and provides
higher-level services. Among these are:

31

� A standard C library including conventional I/O (printf()
and friends), math, and memory management func-
tions.

� Pre-emptive multi-threading and associated synchro-
nization primitives (semaphores).

� Interrupt handling and real-time clocks.

� A flexible device-driver model to attach custom hard-
ware.

Even more useful, however, is the capability of RTEMS com-
bined with a server program running on the host (rtemsserver),
to allow the EPS transparent access to files and devices in
the host file system. E.g., an EPS application can execute
a call to fopen("/etc/passwd", "r") to read the host’s
password file. This capability also extends to the standard
input/output and error streams. For example, assuming an
application-wrapper (see Section 7) named filter.run on
the host contains an EPS program, that program can be
transparently integrated into pipes on the host:

acehost$ cat /etc/passwd | filter.run | sort

These services rely on the VSP /dev/ace0ttyb to signal
the host for EPS I/O requests. Thus, that port is no longer
available for user applications. Details of the port of RTEMS
to the ACE platform are covered in [11].

2.2.3 ACEV API

The ACEV API deals with accessing the configurable hard-
ware. It maps in the FPGA into an EPS-accessible memory
region and also contains utility routines for downloading
configurations, interrupt handling, and addressing. This
API is described in greater detail in Section 6.

3 Embedded Processor System

The SUN microSPARC-IIep RISC processor implements the
SPARC V8 instruction set [14]. In addition to the CPU core,
it also contains an MMU, a DRAM controller and a PCI
bus interface (PCIC). Since RTEMS does not require vir-
tual memory, the MMU is not used in the current setup.

32

Both the DRAM controller and the PCIC, though, play im-
portant roles in the system. The processor architecture is
described in [5].

Many of the more complex functions have been abstracted
in RTEMS and the ACEV API. The following items, how-
ever, do affect EPS applications and need to be considered
explictly:

� Only 16MB-64KB of the EPS DRAM is visible to the
RPU. While this window of ‘blessed’ memory can be
moved in 16MB increments over the entire DRAM space,
this limitation will affect the placement of RPU-accessible
data in EPS memory. In the default RTEMS configu-
ration, the window spans the area from address 0 to
16MB-64KB. This space holds the executable code of
both the user application and RTEMS (the .text seg-
ment), initialized static data structures (.data seg-
ment), uninitialized static data (.bss segment), the C
library heap (managed by malloc() and friends), and
the stack(s). Above this space, to the limit of physical
memory, the RTEMS heap is located. Thus, an appli-
cation can determine on a per-allocation basis whether
a dynamic data structure should be placed in the pre-
cious ‘blessed’ memory or whether it can remain in the
copious conventional memory. See Section 5.4 for more
details.

� For higher performance, both data and instruction caches
are enabled on the EPS. Due to (possibly hardware-
related) problems with the microSPARC-IIep PCI cache
coherency mechanisms, all external writes to the DRAM
(either from the host or by the FPGA in master mode)
will not become completely visible to the CPU until
the data cache is flushed using the RTEMS Kernel
call dcacheFlush() . Note that parts of newly writ-
ten data may show up in DRAM, but the completeness
of the transfers is not guaranteed until the flush. See
Section 6.5 for a description of the times when such
a flush occurs automatically. Alternatively, you could
define non-cacheable areas in the MMU if these ex-
ternal write accesses occur only in a limited memory
region.

33

4 Reconfigurable Processing Unit

The Xilinx Virtex XCV1000BG560-4 FPGA on the Alpha
Data ADM-XRC card acts as the reconfigurable processing
unit on the ACEV platform. The EPS and the RPU have
very different views of their hardware environment.

4.1 EPS View of the RPU

The EPS sees the RPU as two memory ranges: The 8MB
S0 space holds the FPGA-internal register and might al-
low access to the ADM-XRC local memories. Its decoding
is entirely dependent on the user logic configured into the
FPGA. The 8MB S1 space holds board-level control regis-
ters and an additional bank of Flash memory (unused in
the current version of the ACEV platform). Further details
on these memory spaces are given in [6], Section 4.

Both of these ranges are mapped into the EPS memory space.
Their start addresses and lengths in that space can be re-
trieved using the acev get s0 and acev get s1 functions
of the ACEV API (see Section 6). In general, because the
control register programming of the S1 space is hidden in-
side the ACEV API, only the S0 space will be used by ap-
plications. Once the base addresses have been determined,
simple reads and writes using pointers in the address range
will exchange data with the RPU.

...
// be sure do mark the base pointer as volatile!
volatile int *s0base;

// get base address (ignore length)
s0base = acev_get_s0(NULL);

// now write two words of data to the FPGA
s0base[0] = 0x12345678;
s0base[1] = 0xdeadbeef;

// read a word from the FPGA
printf("output is %08x\n", s0base[2]);
...

Using the function acev irq handler() , the EPS can reg-
ister a handler for interrupts caused by the RPU. Such a
handler routine should not perform I/O (since another I/O
operation might already be in progress) and must clear the

34

cause of the interrupt in the FPGA (e.g., by writing a certain
register in the user logic to acknowledge the interrupt).

The EPS configures the RPU hardware function using an-
other set of ACEV API routines (acev load config and
acev load file) as atomic operations. The intricacies of
the FPGA configuration protocol remain hidden to the user
programs.

For synchronization between EPS code and RPU operation,
a semaphore-based mechanism that is also amenable to multi-
threaded EPS programs is used in the ACEV API : Assum-
ing the RPU signals completion by firing an interrupt, an
interrupt handler must be registered that calls the func-
tion acev mark done once the operation is complete. In the
main exeuctiob flow of the user program, acev mark busy()
is called when the RPU is allocated to a thread and the
first RPU accesses, e.g., loading parameters, occur. Once
the user code has started the RPU, it can either continue
to execute, or sleep and wait for RPU completion using the
acev wait() call. In that case, other threads will be sched-
uled by RTEMS until the sleeping thread is awakened by
the RPU interrupt signal.

Finally, the RPU clock is also programmable by the EPS.
While it runs at a default of 28.5MHz, it can be varied be-
tween 25MHz and 40MHz using the ACEV function call
acev set clock() . With certain limitations, this range
can also be exceeded (see [6], Section 5.1 and 5.2).

4.2 RPU View of the EPS

The FPGA can access EPS DRAM independently of the proces-
sor to store data to or retrieve data from the DRAM. This
scenario is called master mode (in contrast to the previously
described slave mode where all transfers are initiated by
the EPS).

All communication from the FPGA to the EPS first passes
through a bus using an i960-like protocol. It consists of a
32b data bus, a 24b address bus (22 actual address lines
and 4 one-hot byte-enable signals), a write indicator, plus
various strobes and ready signals. For details, see [6], Sec-
tion 5.4, and [10], Section 5.3, Table 5-6. Note the slightly

35

different terminology. E.g., LREADYIL vs. READYi#. The fol-
lowing discussion will use the terms defined in [6].

4.2.1 Slave Transfers initiated by the EPS

A slave read (see [10], p.121, Diagram 8-10) from the FPGA
initiated by the EPS begins with an address phase, indi-
cated by an asserted address strobe signal LADSL, at which
time the read/write signal and the bytes enables must also
be sampled by the FPGA. Once the FPGA drives valid data
onto the data bus (after a variable number of cycles!), it as-
serts the LREADYIL signal. If the EPS was only interested in
a single datum, it will have asserted LBLASTL to signal the
end of the transfer after the address phase.

A slave write initiated by the EPS (see [10], p. 122, Dia-
gram 8-11) to the FPGA also begins with the address phase.
However, the data to be written to the FPGA will always
be valid in time for the next positive clock edge after LADSL

has been sampled. When the FPGA has accepted the write-
data, it should assert LREADYIL. As before, LBLASTL will be
de-asserted after the address phase to indicate a single trans-
fer.

Slave transfers are described in more detail in [10], Section
3.6.2. This also discusses the burst transfers as shown in
Diagrams 8-12 to 8-21 of that source.

4.2.2 Master Transfers initiated by the RPU

The memory range accessible in this manner is a block 16MB-
64KB in length, leading to valid local address bus addresses
ranging from 0x000000 to 0xfeffff. This window of ‘blessed’
(=FPGA-accessible) DRAM memory can be moved within
the EPS DRAM space in 16MB increments using the ACEV
API function acev set masterbase . By default, the win-
dow will begin at DRAM address 0. Master mode accesses
can be accomplished in the following manner:

1. Request master access on ADM-XRC local bus by as-
serting FHOLD.

2. Wait until master access acknowledged by asserted
FHOLDA.

36

3. Set-up address, read/write, byte enable, and (option-
ally) write data signals on the local bus.

4. End address phase (for single accesses)

5. Wait until read data arrives/write data was accepted
when LREADYOL becomes accepted.

6. Relinquish master mode access by de-asserting FHOLD.

The detailed timing of this operation is shown in [10], p.
143-4, Diagrams 8-32 and -33 for single cycle reads and
writes, in Diagrams 8-34 and -35 for burst accesses. Note
the latencies involved in this operation: A master single cy-
cle read from the RPU to the EPS DRAM has been observed
to take 46-47 cycles, a single cycle write in the reverse di-
rection takes 10 cycles.

Note that master writes to DRAM are buffered by the BIU
([10], Section 3.6.1). The only guaranteed way to force these
FIFOs to be written to DRAM is to have the Virtex write an
additional 32 words of data (possibly to a dummy address
in DRAM). This becomes critical when IRQs are used by
the Virtex to indicate the completion of an operation: Since
an IRQ by itself does not force writing the FIFO to DRAM,
it may “bypass” the FIFO and indicate readiness to the EPS
even though the result data itself has not been written yet.

4.2.3 Local RPU Memory

In addition to the EPS DRAM, the FPGA has access to 4MB
of local ZBT SRAM memory. This memory is organized as
four independent 36b x 256K banks. When using it, be
aware of the following issues:

� The chips operate synchronously to a common clock.
Note that this is not restricted to the system clock.
Other combinations (e.g., double the system clock) are
possible.

� Since the chips use Zero-Bus Turnaround technology,
no intervening clock cycles are required when chang-
ing between read and write operation.

� Address and read/write control signals are sampled at
the start of a transaction.

37

� Write data is required and read data will arrive on the
RAM pins one or two cycles after the address/control
signals were set. The latency is programmable to trade-
off latency with clock speed:

Flow-through mode : One cycle of latency, min. clock period 15ns.

Pipelined mode : Two cycles of latency, min. clock period 10ns

Be sure to note that the delay cycles also apply to write
data!

� The chips are capable of burst mode operation: After a
start address has been loaded into the chip (by setting
the ADVsignal to 0), up to four words from consecutive
addresses can be read without requiring a new exter-
nal address to be present (hold ADVhigh during the
burst).

4.2.4 Interrupts

For asynchronous signaling, the FPGA may send an inter-
rupt to the microSPARC, for which a handler can be regis-
tered using the ACEV API. The FPGA fires the interrupt by
holding the LINTIL output signal at a low logic level. The
user design itself should have a provision to clear this in-
terrupt (e.g., by writing to an FPGA register address in S0
space). It is not recommended to deactivate the interrupt by
calling the ACEV API enabling/disabling routines. These
are intended only for the initial set-up and final tear-down
of IRQ management, not for a per-IRQ usage.

5 Memory Map

A simplified memory map of the ACEV platform is shown
in Figure 4. On the left side of the memory range, the ad-
dresses of the respective memory region are shown. On the
right side, its main use is described. Note that most of the
addresses are variable: They can be retrieved at run-time
by reading out global variables or calling dedicated func-
tions.

38

___rtems_start_rtems_heap

0

0x100000

___rtems_start_c_heap

___rtems_end_memory

acev_get_s1()

acev_get_s0()
8MB

8MB

1MB

0xFEFFFF

F
P

G
A

-a
cc

es
si

bl
e

.bss

.data

.text

User Application

RTEMS Kernel

ACE firmware use
uSPARC IRQ Vectors

Managed by C Library

Managed by RTEMS

ADM-XRC S1 Space

ADM-XRC S0 Space

End of Physical Memory

Figure 4: Simplified ACEV Memory Map

39

5.1 Low Memory

The bottom 1MB of the memory range holds the microSPARC
interrupt vectors and is used on power-up by the TSI-provided
ACE firmware.

5.2 Application Code and Data

User programs are loaded above 0x100000 (1MB). Gener-
ally, these programs will consist of a binary image holding
both the RTEMS kernel and the actual user application. In
this image, .text is the section for executable code, .data
holds constant-initialized data, while .bss holds uninitial-
ized data (which will be zeroed on system boot).

5.3 C Library Heap and Stack Space

Above these regions, the heap managed by the C library
functions (malloc() and friends) begins. Note that the
stack for each thread will also be allocated from this re-
gion. The startup-thread (in which main() executes has
a stack of 128KB by default. If an application requires
more stack space, the simplest solution is to start its main
function in another thread. This can be achieved using
the RTEMS function rtems task create (see [12], Section
4.4.1), which accepts the size of the thread’s stack space as
an input parameter. The initial task can then sleep until
the new main task completes.

5.4 FPGA-Accessible Memory

The default RTEMS/ACEV configuration guarantees that
all of the structures listed above (low memory, application
code and data, C library heap, and all stacks) lie within
the 16MB-64KB window of ‘blessed’ FPGA-accessible mem-
ory (also see Section 3) starting at address 0. By doing so,
all microSPARC pointers within that region (to global or lo-
cal variables or dynamically allocated memory) can also be
passed to the RPU for access. Conversely, the size of this re-
gion will always be limited to 16MB-64KB regardless of the
amount of physical memory actually present on the ACE-
card. If more memory is available, it will be managed as
part of the RTEMS workspace (also known as the RTEMS
heap, see next section). It is possible to move the blessed

40

window in 16MB increments using an ACEV API function
(see Section 6.2.4) into this higher memory region. How-
ever, it will then be the user’s responsibility to ensure that
all pointers passed to the RPU are expressed as offsets origi-
nating from the actual physical start address of the ‘blessed’
window.

5.5 RTEMS Workspace

All physical memory above 16MB-16KB (above the default
‘blessed’ window) is allocated to the RTEMS workspace. The
OS allocates its internal data structures (e.g., task control
blocks, queues, etc.) from this region. Additionally, how-
ever, a user program also request an allocation from the
workspace. This can be used for large data structures that
will not need to be accessed by the RPU (e.g., profiling logs,
large I/O buffers, etc.). The API describes next handles ac-
cess to the workspace:

Include the following headers in your source code:

#include <rtems.h>
#include <rtems/score/wkspace.h>
#include <rtems/score/wkspace.inl>

This requires that you have added a

-I $(RTEMSACE)/sparc-rtems/include/rtems-ace2

to the compile command in your Makefile. We assume here
that RTEMSACEis an environment variable that points to your
base RTEMS/ACE install directory (the one containing bin/ ,
lib/ , sparc-rtems/ , etc.).

Workspace memory is then allocated using the call

void *_Workspace_Allocate(unsigned32 size);

This function will return NULL if the request cannot be
fulfilled. Blocks are released by

boolean _Workspace_Free(void *block_to_free);

This will return TRUE on success and FALSE if the block
could not be freed.

Note that these routines use rather simplistic allocation al-
gorithms. If you have many requests to make, just allocate

41

one large block using these facilities and manage it yourself
by handing the block to the

RTEMS Partition Manager : to manage fixed-size requests

RTEMS Region Manager : to manage variable-size requests

See the [12], Chapters 12 and 13, for further info on these
services.

6 ACEV API

The ACEV API is a set of routines that hides the hardware-
specific details ACEV hardware behind a small and easy to
use interface. It deals with the following issues:

Initialization : Attach the ADM-XRC card to the local PCI bus on the
ACEcard.

Addressing : Retrieves the addresses of various memory ranges.

FPGA Configuration : Load hardware designs into the Virtex FPGA. Note
that the interface supports compressed configurations
created using the bit2o tool (see Section 8.1).

Clock Programming : Set the ADM-XRC local bus clock to a given frequency.

IRQ Handling : Set-up and register a handler for Virtex IRQs.

Synchronization : Manage the FPGA as a shareable resource between
different (or within the same) threads.

The following sections will describe the functionality of the
specific calls. All of the prototypes, constants, and data
structures are defined in the include file acevapi.h .

Many routines return negative status codes on failure. As
shown in Table 1, four ranges are defined for these codes.

See acevapi.h for the macros LZOERRand RTEMSERRthat
describe how the various actual error codes (occurring in
subroutines) are mapped to this common range.

6.1 Initialization

During initialization, the ACEV API maps the address ranges
on the ADM-XRC card into the local PCI address space and

42

Range Description
c > 0 No error (user defined value)
c = 0 No error

ACEVRTEMSERR< c < ACEVLZO ERR Decompression error
c < ACEVRTEMSERR RTEMS error

Table 1: Status code ranges

then programs the microSPARC PCI controller to map these
PCI addresses into its own address range.

6.1.1 acev init

Interface : int
acev init()

Function : Initialize the ACEV API and map an attached ADM-
XRC daughter-board into the EPS address space. In-
stall a default handler for interrupts that just prints
a message and then exits. Finally, enable interrupts
from the FPGA to the microSPARC. This function must
be called before any other ACEV API calls are used.

Diagnostics : ACEVFPGAINV – No ADM-XRC daughter-board found
RTEMS – Could not create synchronization semaphore.

Source Code : acevinit.c

6.2 Addressing

To flexibly allow future expansions, many of the address
ranges described in Section 5 are not hard-coded to fixed
addresses, but are allowed to remain variable. For the most
commonly used of these ranges, the current start addresses
and extents can be retrieved using ACEV API calls.

6.2.1 acev get s0

Interface : volatile void *
acev get s0(size t *length)

43

Function : Return the start address of the ADM-XRC S0 space
(see Section 4.1 and [6], Section 4). Optionally, the
length of S0 in bytes may be retrieved by passing in
a pointer to a size t variable. If this is not desired,
NULLmay be passed in as a pointer.

Diagnostics : None.

Source Code : acevinit.c

6.2.2 acev get s1

Interface : volatile void *
acev get s1(size t *length)

Function : Return the start address of the ADM-XRC S1 space
(see Section 4.1 and [6], Section 4). Optionally, the
length of S1 in bytes may be retrieved by passing in
a pointer to a size t variable. If this is not desired,
NULLmay be passed in as a pointer.

Diagnostics : None.

Source Code : acevinit.c

6.2.3 acev get masterbase

Interface : volatile void *
acev get masterbase(size t *length)

Function : Return the start address of the ‘blessed’ memory range
in EPS DRAM which is also accessible by the FPGA
(see also Sections 3 and 4.2.2). Optionally, the length
of this region in bytes may be retrieved by passing in
a pointer to a size t variable. If this is not desired,
NULLmay be passed in as a pointer.

Diagnostics : None.

Source Code : acevinit.c

6.2.4 acev set masterbase

Interface : void
acev set masterbase(void *base)

Function : Set the start address of the ‘blessed’ memory range
in EPS DRAM which is also accessible by the FPGA

44

(see also Sections 3 and 4.2.2). Note that this window
may currently only be moved in 16MB increments. Be
sure that it lies entirely in physical memory: FPGA
accesses to non-existent addresses may hang the en-
tire system (including the host!). Caution: All default
address mappings in the ACEV tools assume that the
window is located at address 0. Your local variables,
data segment, and the C heap will no longer be acces-
sible to the FPGA if you move the window to a differ-
ent address!.

Diagnostics : None.

Source Code : acevinit.c

6.3 FPGA Configuration

The ACEV API hides the intricacies of the FPGA configura-
tion process (which may require delay loops at certain point
to ensure protocol compliance). To the user, the API offers
two simple calls that differ only in the source of the config-
uration data to load.

One call accepts the path to a Xilinx .bit file on the host.
The .bit format is the default output format of the stan-
dard Xilinx design tools and can thus be easily created. For
larger chips, however, .bit files quickly become unwieldy:
The size of a Virtex XCV1000 configuration is 765968 bytes
(plus some header data in the .bit file). While one could
embed these files into a user program (e.g., as large sta-
tic arrays), the required space (especially when multiple
configurations are considered) becomes unacceptable. The
same applies to the compile time of the resultant C code
commonly generated from the .bit files.

As an alternative, the ACEV API allows the use of com-
pressed configurations that are converted directly into link-
able ELF object files. In this manner, the size of each con-
figuration may be reduced tremendously: While it is de-
pendent on the complexity of the design actually contained
in the .bit file, simpler designs can compress down to a
few KBs. By directly writing ELF files, the lengthy com-
pile phase can also be omitted. Compression and ELF con-
version is handled as a single operation using the bit2o
program (described in Section 8.1). During this step, a sym-

45

bolic name for the compressed configuration is defined that
is used at run-time to refer to the data.

6.3.1 acev load file

Interface : int
acev load file(char *bitfilename)

Function : Load the .bit file named by the path bitfilename .
Note that this path refers to a file on the host. Relative
paths describe a file relative to the current directory of
the rtemsserver program executing on the host (see
Section 8.2)

Diagnostics : ACEVBITLOAD FAIL – Could not open .bit file.
ACEVBITFILE INV – Not a standard .bit file.
ACEVBITFPGA INV – .bit unsuitable for FPGA part.
ACEVDECOMPFAIL – Bitstream has invalid length.
ACEVCONFIGFAIL – Configuration download failed.

Source Code : acevload.c

6.3.2 acev load config

Interface : int
acev load config(acev ELF bitstream *config-
data)

Function : Load the compressed configuration pointed to by con-
figdata . In general, you will use the symbolic name
passed to bit2o during the conversion process as con-
figdata here.

Diagnostics : Decompression errors – LZO package failed.
ACEVBITOBJ INV – Not a valid bitstream object.
ACEVDECOMPFAIL – Bitstream has invalid length.
ACEVCONFIGFAIL – Configuration download failed.

Source Code : acevload.c

6.4 Clock Programming

The VCLK programmable clock generator on the ADM-XRC
card (see [6], Section 5.2) may be programmed to a fre-
quency between 25MHz and 40MHz. The lower limit is due

46

to the inability of the Virtex DLLs to lock at lower frequen-
cies. The upper limit is imposed by the maximum PLX 9080
[10] local bus frequency. Currently, the ACEV API supports
only a single clock. The optional ADM MCLK may become
supported at a later time. The default VCLK frequency is
28.5 MHz.

6.4.1 acev set clock

Interface : int
acev set clock(double freq)

Function : Set the ADM-XRC system clock (local bus and FPGA
clock) to the frequency in Hz given by freq .

Diagnostics : ACEVFREQINV – Frequency outside valid range.
ACEVCLOCKERR– Clock programming failed.

Source Code : acevclock.c

6.5 Interrupt Handling

Using the ACEV API, the user program may register a spe-
cial handler routine to react to interrupts caused by the
FPGA (Section 4.2.4). The default handler installed by the
initial acev init invocation just prints a message and then
exits the program.

Additional management functions are available in the API
for enabling and disabling interrupts in general. As another
side effect of acev init , interrupts will be enabled. The
following strategy is recommended for managing these in-
terrupts:

� Do not disable interrupts unless absolutely required
by the rest of the software environment (e.g., when
hard real time constraints have to be obeyed). In gen-
eral, it is more beneficial to react to all interrupts,
even if only using the default handler: Since an unex-
pected interrupt often points to deeper problems within
a given application, IRQs should be kept observable in
this manner.

� The interrupt handler routine is responsible for turning-
off the cause of the interrupt on the FPGA. The nature

47

of the mechanism itself is application-specific. Exam-
ples include writing to or reading from a specific S0
address on the FPGA. In this manner, the FPGA re-
ceives an acknowledge from the microSPARC and can
now de-assert the interrupt line.

� This explicit deactivation of interrupts at the source
is different and preferable to the alternative of rely-
ing on the API routines to just mask an IRQ after its
arrival. Since these calls have to set registers at multi-
ple locations in the interrupt path to mask/unmask in-
terrupts, their execution can take considerably longer
than the explicit deactivation by just a single S0 ac-
cess.

The ACEV API will always flush the data cache before call-
ing the user-registered handler. This ensures that the han-
dler code will see all master-mode writes the FPGA might
have performed to DRAM.

6.5.1 acev irq enable

Interface : void
acev irq enable()

Function : Enable interrupts from the ADM-XRC to the microSPARC
and clear existing interrupt indicators in the various
registers. Note that this cannot clear the cause of an
interrupt on the FPGA. This function is called auto-
matically in acev init .

Diagnostics : None.

Source Code : acevinit.c

6.5.2 acev irq disable

Interface : void
acev irq disable()

Function : Disable interrupts from the ADM-XRC to the microSPARC
and clear existing interrupt indicators in the various
registers. Note that this cannot clear the cause of an
interrupt on the FPGA.

Diagnostics : None.

48

Source Code : acevinit.c

6.5.3 acev irq handler

Interface : void
acev irq handler(acev irq fn ifn, acev irq fn
*old)

Function : Register a new function ifn as a handler for ADM-
XRC interrupts. This function must have a prototype
of the form void handler() . Optionally, the current
IRQ handler function can be retrieved by passing in
an appropriate pointer in old . NULLmay be passed in
here to just overwrite the handler with the new one.
Note: RTEMS I/O operations (printf() etc.) are not
guaranteed to execute correctly when called from an
interrupt routine and should be avoided!

Diagnostics : None.

Source Code : acevinit.c

6.6 Synchronization

The ACEV API offers three functions dealing with synchro-
nizing the hardware and software operations. They can be
used within a thread as well as to coordinate access to the
FPGA from multiple RTEMS threads.

6.6.1 acev mark busy

Interface : int
acev mark busy()

Function : Request access to the FPGA for this thread. This should
be called before the first write to or read from the FPGA
is executed.

Diagnostics : ACEVBUSY– FPGA is already in use.
RTEMS error – Problems with the semaphore.

Source Code : acevinit.c

6.6.2 acev mark done

Interface : int
acev mark done()

49

Function : Relinquish access to the FPGA and wake threads wait-
ing for the completion of an FPGA operation. This may
be called from an IRQ handler to restart threads that
sleep using the acev wait call.

Diagnostics : RTEMS error – Problems with the semaphore.

Source Code : acevinit.c

6.6.3 acev wait

Interface : int
acev wait()

Function : Wait for an FPGA operation to complete. An operation
is deemed complete once acev mark done has been
called (possibly in the IRQ handler task, reacting to
an interrupt by the FPGA). RTEMS will continue to
schedule other threads (if any exist) while waiting, a
sleeping thread will thus be prevented from hogging
the entire system (as would occur with a polling ‘busy
wait’ loop).

Diagnostics : RTEMS error – Problems with the semaphore.

Source Code : acevinit.c

7 Design Flow

Due to the hybrid nature of the ACEV platform, the design
flow includes both hardware and software elements. Figure
5 shows the major steps.

7.1 Software

The software branch is shown on the left side. Most of it
consists of a standard compile-assemble-link cycle, but with
the following extensions:

� Since the ACEcard firmware is not able to load ELF-
format executables (which are created by the linker),
the ELF executable files have to be converted into a
simple binary format using the objcopy tool of the
GNU binutils.

50

C Compiler
gcc

Assembler
as

Synthesis
ncc, ...

Xilinx Tools
map, par,...

ELF Conversion
bit2o

Linker
ld

Binary Conversion
objcopy

Loader-I/O Server
rtemsserver

Debugger
gdb

EDIF Netlists

Bitstreams

ELF Executable

ELF Objects ELF Objects

ELF Executable

GDB Debug Protocol

SPARC Assembler

Loadable Binary

R
un

-t
im

e
lo

ad
in

g

Figure 5: ACEV Design Flow

51

� However, these binary files no longer contain the sym-
bol information required for debugging. Thus, the orig-
inal ELF executable is loaded into GDB using the sym
command to access the original (pre-binary conversion)
symbol information.

� Since the ACEV program no longer runs on the host,
but on the ACEcard EPS, GDB has to be put in remote
debugging mode using the

target remote /dev/ace0debug

command.

7.2 Hardware

The right hand side of Figure 5 shows the hardware part
of the ACEV flow. Hardware will commonly be entered in
an HDL such as Verilog or VHDL and processed using logic
synthesis. Sometimes, an even higher-level description such
as C might be compiled. In both cases, the synthesis tool /
compiler produces an EDIF netlist that is fed into the Xil-
inx M-series design implementation tools (ngdbuild , map,
par , bitgen , use versions M2.1iSP6 or M3.1iSP1 or later).
The resultant bitstream in .bit format may then be loaded
into the FPGA at run-time (useful for debugging, see the de-
scription of acev load file in Section 6.3.1) or be processed
further (recommended for production work). In that case,
the .bit file is compressed and turned into linkable ELF-
object file that will become part of the final binary dur-
ing linking. These compressed and linked configurations
are loadable using the function acev load config (Sec-
tion 6.3.2).

7.3 Run-Time

The binary-format executable is then loaded using the host-
side rtemsserver program (see also [11] and Section 8.2),
which acts both as a loader as well as the server for I/O re-
quests (access to the host file system, stdin, stdout, stderr,
etc.). Using suitable options, rtemsserver can also load
the program in debug mode and allows GDB (running on
the host) to stop the binary before its first instruction. From
that point on, the program can be source-level debugged

52

using conventional techniques using single-stepping, break
points, data displays etc.

8 Tools

The design flow described in Section 7 uses some custom
tools that are described briefly below.

8.1 bit2o

This program converts Xilinx bit-streams in .bit format
into the directly linkable ELF object format. Furthermore,
it also compresses them using the LZO compression algo-
rithm ([15]). The command line for bit2o looks like:

bit2o [-v] infile.bit outfile.o symbol name

infile.bit is the input .bit file, outfile.o will hold
the generated ELF object code, and symbol name will be
the name by which this bit-stream can be referred to in an
acev load config call (see Section 6.3.2). The optional ‘-
v ’ switch provides more verbose messages.

8.2 rtemsserver

The RTEMS program loader and host I/O server is described
in detail in [11]. For reference, a brief description of the ma-
jor options is shown in Figure 6.

For ease of use on the ACEV platform, you should set the
environment variable ACE2PREFIX to ace (otherwise, the
-Xace switch becomes mandatory). With the possible ex-
ception of the ‘debug mode’ switch, no other command op-
tions should be required. A sample call to run the program
assumed to be named test.bin (which should have been
converted from the ELF executable to binary executable us-
ing objcopy) on the ACEV might look like:

rtemsserver test.bin

For debugging, run ‘rtemsserver -d test.bin ’ in one win-
dow to load and stop the program on the EPS, and the type
host$ gdb
(gdb) map test.exe
(gdb) target remote /dev/ace0debug

53

rtemsserver [-c<cardnum>] [-d] [-i] [-v] [-P<path>] [-X<prefix>] [-e<entry>] <file>
-c<cardnum> Selects card numbered <cardnum>. Default=0

Also set using variable ACE2CARDNUM.
-d Set debug mode for GDB: breakpoint at start of program.
-i Ignore following switches and pass them to program.
-v Verbose mode.
-P<path> Set local current directory on the host to <path>.
-X<type> Select card type. Valid=ace,aceII. Default=aceII.

Also set using variable ACE2PREFIX.
-l Do not create lock files for device.
-e<entry> Set program entry point address. Default=0x00100000.
<file> The program binary to run on the uSPARC.

Figure 6: rtemsserver command options

in another. The first command loads the debug symbols
from the original ELF executable (assumed to be named
test.exe , not processed by objcopy), the second command
attaches GDB to the stopped program on the EPS. From
here on, you can use the standard GDB commands. Note:
Since your program is already running on the EPS, use the
‘c’ (continue) command to resume execution. The ‘r’ (run)
command will not work!

8.3 LPWB

LPWB(the acronym stands for Local Programmers Work-
bench) is a simple debugging tool which runs locally on the
EPS. It can examine and modify memory (and thus also the
S0 space holding the mapped FPGA registers).

LPWB commands refer to a previously set base-address.
This base address is set by just typing it on the command
line. LPWB will respond by printing the current contents of
that memory location. Just pressing Enter here will return
you to the main prompt and leave the value unchanged.
A valid hex number will be interpreted as a write request
to the previously set memory address, overwriting the old
value. Both at the main prompt and at the value prompt
(just described), commands may be entered. E.g., ’l’ will

54

[ace] (˜/Work/Projects/ACE/LPWB) 1 % ./lpwb.run
Local PWB for RTEMS/ACE v1.3 by EIS/TSI/Synopsys (Aug 4 2000 15:24:06)
ADM-XRC attached: PLX@30100800 S0@31000000 S1@31800000
LPWB> v
Enter name of .bit file to load:
../acev/irq-V1000.bit
Configuration complete.
LPWB> 31000000 <--- this is the S0 start shown above
31000000> 12345678 04000000 <--- write the countdown start value
LPWB> p <--- show the value counting down
31000000> 018b2195 018b192a 018b14b9 018b108f ..!....*...9....
31000010> 014e0bd8 014e073d 014e0324 014dff21 .N.X.N.=.N.$.M.!
31000020> 0110f8cc 0110f417 0110eff7 0110ebdf ..xL..t...ow..k_
31000030> 00d3eb91 00d3e6fc 00d3e302 00d3df09 .Sk..Sf|.Sc..S_.
31000040> 0096de60 0096d9d9 0096d5d2 0096d1c2 ..ˆ‘..YY..UR..QB
31000050> 0059d1ac 0059cd25 0059c922 0059c525 .YQ,.YM%.YI".YE%
*** Unhandled interrupt by ADM FPGA, exiting ... ***
[ace] (˜/Work/Projects/ACE/LPWB) 2 %

Figure 7: Sample LPWB session

disassemble the next 16 instructions starting at the base
address. Longer memory dumps can be printed using the
’p’ command, which shows the next 64 words. The ’v’ com-
mand can be used to load a Xilinx .bit file into the Virtex
FPGA. The ’r’ command reconfigures the FPGA into a safe
default configuration that just maps all of the FPGA-local
memory into S0 space. At the start of LPWB, the current
address ranges for S0 and S1 are displayed.

A sample LPWB session is shown in Figure 7. The sample
FPGA design (see Section 10) loaded just maps a single 32b
register into S0 space. On start-up, that register contains
the value 0x12345678. A write to the register will result
in a countdown that fires an IRQ on reaching zero. Since
LPWB only uses the default IRQ handler, it will exit after
receiving the interrupt.

9 Sample Makefile

Figure 8 shows a sample Makefile that might be used for an
RTEMS/ACEV application. Note the different stages:

1. The hardware design is translated from .bit format

55

into the linkable ELF object format and compressed
using the bit2o tool.

2. The main program is compiled and linked with the
hardware to form an ELF executable program (exten-
sion .exe).

3. The ELF executable is translated into a binary pro-
gram for loading onto the EPS (extension .bin).

4. The binary program is wrapped to allow automatic
loading from the command line using the shell inter-
preter ‘#! ’ mechanism (extension .run).

5. The resulting program is then loaded onto the EPS
and connected to the I/O server by simply running the
command acevtest.run from the host shell prompt.

56

the root of the RTEMS/ACEV install tree
(containing bin, sparc-rtems etc.)
RTEMSACE=/acs/ace/rtems

the target program and the included target hardware
PROG=acevtest
HARDWARE=irq-V1000.o

for running the tools
RTEMSBIN=$(RTEMSACE)/bin

the RTEMS/ACE2 IO server
SERVER=$(RTEMSBIN)/rtemsserver

the compile-flow tools
CC=$(RTEMSBIN)/sparc-rtems-gcc
LD=$(RTEMSBIN)/sparc-rtems-gcc
COPY=$(RTEMSBIN)/sparc-rtems-objcopy
BIT2O=$(RTEMSBIN)/bit2o

the compile options
CCOPTS= -fasm -specs bsp_specs -qrtems -O3 -I include \

-I $(RTEMSACE)/sparc-rtems/include/rtems-ace2
LDOPTS= -fasm -specs bsp_specs -qrtems -O3 -Xlinker -Map -Xlinker acevtest.map
COPYOPTS=-O binary

make rules
default: all

build the ELF-format executable
$(PROG).exe: $(PROG).o $(HARDWARE)

$(LD) -o $(PROG).exe $(PROG).o $(HARDWARE) $(LDOPTS) -lm
.c.o:

$(CC) -c $(CCOPTS) $<

convert the .bit FPGA design into ELF-linkable format
$(HARDWARE).o: $(HARDWARE).bit

$(BIT2O) $(HARDWARE).bit $(HARDWARE).o $(HARDWARE)

convert the ELF-executable into straight binary format
$(PROG).bin: $(PROG).exe

$(COPY) $(COPYOPTS) $(PROG).exe $(PROG).bin

wrap binary into format for direct running from the command line
all: $(PROG).bin

echo "#!$(SERVER)" | cat - $(PROG).bin > $(PROG).run
chmod a+x $(PROG).run
@echo "OK, ACE2 RTEMS executable for $(PROG) built. Run it using \n\t./$(PROG).run "

clean up
clean:

rm $(PROG).exe $(PROG).bin $(PROG).run $(PROG).o

Figure 8: Sample RTEMS/ACEV Makefile

57

10 Sample Hardware

This section shows the simple IRQ-firing hardware that was
already demonstrated in the description of LPWB (Section
8.3). Note that the placement of I/O pins occurs using an
extra Xilinx user constraint file (extension .ucf). A sam-
ple of such a file is shown in Section 11. See citeadm for a
complete description of all pins.

58

1 //
2 // irq.v
3 //
4 // Example program for ADMXRC / any Virtex
5 //
6 // set up a register in S0 space that holds the magic number 0x12345678
7 // on startup. A write to the register will start a countdown from the
8 // value written. On reaching zero, an interrupt will be fire to the EPS
9 // which can be turned off by any write to the register

10 //
11 // Andreas Koch <koch@eis.cs.tu-bs.de>, June 2000
12 //
13

14 module irq(
15 LCLKA, // system clock
16

17 LRESETOL, // system reset
18

19 LWRITE, // write indicator
20 LADSL, // address strobe (starts address phase)
21 LBLASTL, // end-of-access indicator
22 LBTERML, // terminate access (unused)
23 LD, // local 32b data bus
24 LA, // local 24b address bus
25 LREADYIL, // transaction complete acknowledge
26 LBEL, // bus enables
27

28 LINTIL // interrupt request signal
29

30);
31

32 parameter LOGIC0 = 1’b0;
33 parameter LOGIC1 = 1’b1;
34

35 input LCLKA;
36 input LRESETOL;
37 input LWRITE;
38 input LADSL;
39 input LBLASTL;
40 output LBTERML;
41 inout [31:0] LD;
42 input [23:2] LA; // last 2b of address are in byte enable lines
43

44 output LREADYIL;
45 input [3:0] LBEL;
46

47 output LINTIL;
48

49 wire CLK;
50

51 // flip polarity for better readability

59

52 wire RESET = ˜LRESETOL;
53 wire ADS = ˜LADSL;
54 wire BLAST = ˜LBLASTL;
55 wire [3:0] LBE = ˜LBEL[3:0];
56 wire READ = ˜LWRITE;
57

58 // status register: 1 on ‘FPGA has been addressed’
59 reg ADDRESSED;
60

61 reg [31:0] data; // down counter
62 reg irqon; // current IRQ status
63 reg fire; // fire the IRQ on counter=0?
64

65 //
66 // the interrupt status
67 //
68 assign LINTIL = !irqon;
69

70 //
71 // During read, output ‘data’ onto local bus, otherwise float.
72 // We write our two status registers as MSBs.
73 //
74 assign LD = (ADDRESSED & READ) ?
75 data
76 : 32’hzzzzzzzz;
77

78 //
79 // Only drive READY when addressed, otherwise float because
80 // the control logic on the XRC also drives READY.
81 //
82 assign LREADYIL = ADDRESSED ? 1’b0 : 1’bz;
83

84 //
85 // Never assert BTERM but drive it high
86 // (BTERM can act as READY in burst operation)
87 //
88 assign LBTERML = 1’b1;
89

90 //
91 // Insert the STARTUP module to issue reset globally
92 //
93 STARTUP_VIRTEX ChipStartup(.GSR(RESET));
94

95 //
96 // Define the system clocks, derived from local bus clock
97 //
98 IBUFG IBUFG_LCLK(.I(LCLKA), .O(LCLKA_I));
99 //

100 // Un-comment the following to use DLL’s
101 // You may need to turn on the Verilog preprocessor
102 //

60

103 // ‘define USEDLL
104

105 //
106 // Using the DLL will minimise skew and improve performance
107 // Ensure Service Pack 4 is used to compile this though
108 //
109 ‘ifdef USEDLL
110 CLKDLL CLKDLL_LCLK(
111 .CLKIN(LCLKA_I),
112 .CLK0(LCLK0),
113 .CLKFB(CLK),
114 .RST(LOGIC0),
115 .LOCKED(LCLK_LOCKED)
116);
117

118 BUFG BUFG_LCLK(.I(LCLK0), .O(CLK));
119

120

121 ‘else
122

123 BUFG BUFG_LCLK(.I(LCLKA_I), .O(CLK));
124

125 ‘endif
126

127 //
128 // Decode the MSB of address to get the FPGA space
129 // Bursting is allowed with this decode
130 // BLAST disables operation
131 //
132 always @ (posedge CLK or posedge RESET)
133 begin
134 if(RESET)
135 // we start up as ‘non-addressed’
136 ADDRESSED <= 1’b0;
137 else
138 begin
139 if(ADS)
140 // a new address phase begins ...
141 if(LA[23] == 1’b0)
142 // assume we are addressed in the entire lower 4MB range
143 ADDRESSED <= 1’b1;
144 else
145 // upper 4MB must be someone else ...
146 ADDRESSED <= 1’b0;
147

148 if(BLAST & ADDRESSED)
149 // we were addressed, but this was the end of the transaction
150 // so become non-addressed again
151 ADDRESSED <= 1’b0;
152 end
153 end

61

154

155 //
156 // interrupt and downcounter logic
157 //
158

159 always @(posedge CLK or posedge RESET) begin
160 if (RESET) begin
161 // start off
162 fire <= 0; // unarmed, wait for first write
163 irqon <= 0; // no interrupt requested
164 data <= 32’h12345678; // magic number for debugging
165 end else if (ADDRESSED & LWRITE) begin
166 // someone has written data to us
167 if (irqon) begin
168 // the IRQ was already on, just turn it off now
169 irqon <= 0;
170 end else begin
171 // we had now previous IRQ, arm countdown
172 fire <= 1;
173 end
174 // read data from local bus into register
175 data <= LD;
176 end else if (data == 0 && fire) begin
177 // we are armed and our counter is zero -> fire IRQ
178 irqon <= 1;
179 fire <= 0;
180 end else if (fire) begin
181 // we are armed, run countdown
182 data <= data - 1;
183 end
184 end
185

186 endmodule

62

11 Sample Pin Assignments

The following Xilinx user constraint file shows how to as-
sign physical pins to the ports used in the top-level hard-
ware modules.

##
#
CLOCK PINS FOR Local Bus and SSRAM’s
#
##
NET "LCLKA" LOC = "A17";
##

##
#
Local Bus Address, Data and Control
#
##
NET "LD[31]" LOC = "H31";
NET "LD[30]" LOC = "K29";
NET "LD[29]" LOC = "H32";
NET "LD[28]" LOC = "J31";
NET "LD[27]" LOC = "K30";
NET "LD[26]" LOC = "H33";
NET "LD[25]" LOC = "L29";
NET "LD[24]" LOC = "K31";
NET "LD[23]" LOC = "L30";
NET "LD[22]" LOC = "J33";
NET "LD[21]" LOC = "M29";
NET "LD[20]" LOC = "L31";
NET "LD[19]" LOC = "M30";
NET "LD[18]" LOC = "L32";
NET "LD[17]" LOC = "M31";
NET "LD[16]" LOC = "L33";
NET "LD[15]" LOC = "N30";
NET "LD[14]" LOC = "N31";
NET "LD[13]" LOC = "M32";
NET "LD[12]" LOC = "P29";
NET "LD[11]" LOC = "P30";
NET "LD[10]" LOC = "P31";
NET "LD[9]" LOC = "P32";
NET "LD[8]" LOC = "R29";
NET "LD[7]" LOC = "R30";
NET "LD[6]" LOC = "R31";
NET "LD[5]" LOC = "R33";
NET "LD[4]" LOC = "T31";
NET "LD[3]" LOC = "T29";
NET "LD[2]" LOC = "T30";
NET "LD[1]" LOC = "T32";
NET "LD[0]" LOC = "U31";

63

NET "LA[23]" LOC = "D28";
#NET "LA[22]" LOC = "C30";
#NET "LA[21]" LOC = "D29";
#NET "LA[20]" LOC = "E28";
#NET "LA[19]" LOC = "D30";
#NET "LA[18]" LOC = "F29";
#NET "LA[17]" LOC = "D31";
#NET "LA[16]" LOC = "F30";
#NET "LA[15]" LOC = "C33";
#NET "LA[14]" LOC = "G29";
#NET "LA[13]" LOC = "E31";
#NET "LA[12]" LOC = "D32";
#NET "LA[11]" LOC = "G30";
#NET "LA[10]" LOC = "F31";
#NET "LA[9]" LOC = "H29";
#NET "LA[8]" LOC = "E32";
#NET "LA[7]" LOC = "E33";
#NET "LA[6]" LOC = "G31";
#NET "LA[5]" LOC = "J29";
#NET "LA[4]" LOC = "F33";
#NET "LA[3]" LOC = "G32";
#NET "LA[2]" LOC = "J30";

#NET "LBEL[3]" LOC = "D27";
#NET "LBEL[2]" LOC = "B30";
#NET "LBEL[1]" LOC = "C29";
#NET "LBEL[0]" LOC = "AL18";

NET "LRESETOL" LOC = "AM18";
NET "LADSL" LOC = "C28";
NET "LWRITE" LOC = "E26";
NET "LBLASTL" LOC = "C27";
NET "LBTERML" LOC = "E25";
NET "LREADYIL" LOC = "A28";
NET "LINTIL" LOC = "D25";

##
#
Pin performance attributes
#
##

NET "LD[*" FAST;
#NET "LA[*" FAST;
NET "LA[23] " FAST;
NET "LREADYIL" FAST;

12 Troubleshooting

64

12.1 Host VSP device busy

Under some circumstances, abnormal termination of an EPS
program leads to the stall of host programs that were us-
ing VSPs to connect to the ESP. Examples include tip con-
nected to /dev/ace0ttya for watching trace messages, or
GDB used on /dev/ace0debug for single stepping a pro-
gram.

These programs apparently cannot be killed (even using the
‘-9 ’ option) since they are held in a blocking read from the
VSPs without anything alive at the other side which could
actually produce the data. The solution is to load a small
program into the EPS (using TSI’s acedownload program)
that simply generates output (1024 bytes seem to work well)
on all four VSPs. The hanging host programs will then
awaken and notice that they have been killed in the mean-
time. Such a VSP-blasting EPS program might be included
in your distribution as the file smack.bin .

References

[1] Koch, A., “A Comprehensive Prototyping-Platform for
Hardware-Software Codesign”, Proc. IEEE Workshop
on Rapid Systems Prototyping (RSP), Paris, 06/2000

[2] TSI TelSys Inc., “ACEcard User’s Manual”, vendor doc-
umentation, 02/1998. 1

[3] TSI TelSys Inc., “ACEcard Hardware Designer’s Man-
ual”, vendor documentation, 02/1998

[4] TSI TelSys Inc., “ACEcard Software Developer’s Man-
ual”, vendor documentation, 02/1998

[5] Sun Microelectronics, “microSPARC-IIep User’s Man-
ual”, device manual, 04/1997 1, 3

[6] Alpha Data Parallel Systems, “ADM-XRC PCI Mezza-
nine Card User Guide”, vendor documentation, 1999
1, 4.1, 4.1, 4.2, 4.2, 6.2.1, 6.2.2, 6.4

[7] Alpha Data Parallel Systems, “ADM-XRC Bus Master
Application Note”, application note AN-XRC02, 1999

[8] Xilinx, “Virtex 2.5V Field Programmable Gate Arrays”,
device datasheet DS003, 1/2000 1

65

[9] GSI Technology, “GS880Z36T 8Mb Pipelined and Flow
Through”, device datasheet, 1/2000 1

[10] PLX Technology, “PCI 9080 Data Book”, device
datasheet 9080-DB-015, 9/1998 1, 4.2, 4.2.1, 4.2.1,
4.2.1, 4.2.2, 4.2.2, 6.4

[11] Rock, M., “Porting RTEMS to the ACE Platform”,
Tech. Univ. Braunschweig student project documenta-
tion, 07/2000 2.2.2, 7.3, 8.2

[12] On-Line Applications Research Corporation, “RTEMS
C User’s Guide, software manual, 10/1998 2.2.2, 5.3,
5.5

[13] On-Line Applications Research Corporation, “RTEMS
Posix User’s Guide, software manual, 10/1998 2.2.2

[14] Weaver, D., Germond, T., “The SPARC Architecture
Manual”, Prentice-Hall, 11/1993 1, 2.2.1, 3

[15] http://wildsau.idv.uni-linz.ac.at/mfx/lzo.html
8.1

66

http://wildsau.idv.uni-linz.ac.at/mfx/lzo.html

67

Appendix B. A Comprehensive Prototyping-Platform for
Hardware-Software Co-Design

A Comprehensive Prototyping-Platform for Hardware-Software Codesign

Andreas Koch
Tech. Univ. Braunschweig (E.I.S.), Gaußstr. 11, D-38106 Braunschweig, Germany

koch@eis.cs.tu-bs.de

Abstract

We present a flexible, yet cost-effective prototyping plat-
form for hybrid hardware/software systems. Our approach
is based on combining off-the-shelf hardware components
with custom software to arrive at an encompassing solu-
tion. We address the hybrid nature by tightly coupling a
conventional processor with configurable logic on a single
PCI expansion card.

1. Introduction

One of the main difficulties in building and evaluating
the hybrid solutions created by hardware/software codesign
methods is theirsystemicnature: The designer is no longer
faced with designing, implementing, and testing a single
chip or a single program, but must consider the interplay
between numerous interdependent hardware and software
components. Simulating such a system is often not feasi-
ble because either the required simulation models are not
available or the complexity of the resulting encompassing
simulation model is so high that the simulation run-times
themselves are no longer practical.

In many cases, the required level of detail can only be
observed by actually prototyping a sufficiently large part of
the system. Due to the this step being on the critical path of
a product introduction, techniques for completing this phase
as quickly as possible become crucial. While past technol-
ogy generations could be easily tested using breadboard as-
semblies, this is no longer practical with current large sys-
tems. With the advent of Field-Programmable Gate Arrays
(FPGAs), the current generation of prototyping systems [1]
[2] is able to emulate circuits of up to 20 Mgates at a cost of
$0.55 to $0.89 per gate [3].

While these emulators allow the rapid prototyping of
very large systems, they are economically infeasible for
smaller design teams and do not address the problem of ef-
ficiently executing the interplay between hard- and software
(they lack conventional on-board processors). An approach
that is far less costly, but that would still allow the seamless

prototyping of such a hybrid system, is quite desirable.

2. Solution

Our solution for these requirements leverages state-
of-the-art FPGA technology to reach the gate capacities
needed for practical testing. This dispenses with the need of
partitioning a larger circuit across a sea of smaller FPGAs
and the resultant increase in complexity and speed. Thus,
we can achieve logic capacities in the 1-3 Mgate range for
$0.008 to $0.01 per gate.

To cover the software angle, the prototyping platform
must contain a sufficiently powerful conventional micro-
processor that is tightly coupled to the reconfigurable logic.
In order to easily implement software on the system, code
running on this CPU must have access to a full set of OS
resources (e.g., C library, memory management, etc.), but
must be unencumbered by OS constraints that would hin-
der access to the hardware (convoluted driver models, high
interrupt latencies).

3. Hardware Architecture

Instead of custom designing an architecture fulfilling
these requirements (as we did before, e.g., in [4] [5]), the
hardware of our current prototyping environment is com-
posed by combining two components off-the-shelf (COTS),
an approach that makes it applicable to a wide variety of
prototyping scenarios. Each of the separate parts adds fea-
tures critical for arriving at an encompassing solution. Fig-
ure 1 shows a schematic of the major hardware features.

3.1. ACE2card

The Lavalogic (formerly known as TSI TelSys, Inc.)
ACE2card (shown in the lower half of Figure 1) was initially
designed to act as a key component in satellite communica-
tions equipment. To allow reuse of the same hardware when
dealing with different communications protocols, the card
offers sufficient configurable gate capacity to accommodate
the timing-critical portions of a variety of protocols.

afrl

afrl

afrl

afrl
68

afrl

EPS

RPU

H
os

t

4085
XC

4085

PLX

PLX

PLX

uSPARC
IIep

64
M

B
 D

R
A

M

i960

i960

PCI

U
se

r
I/O

4kx36b FIFO 4kx36b FIFO

XC

1 MB Flash

256kx32b256kx32b

PCI

128kx36b

128kx36b

128kx36b

128kx36b

1000
XCV

ADM-XRC

ACE2card

Figure 1: Hardware architecture

The major distinguishing feature between theACE2card
and other FPGA-supporting platforms, e.g., [6] [7], is the
on-board presence of a conventional RISC processor. This
tight integration allows the realistic prototyping of hybrid
hardware/software solutions, unencumbered by the over-
head of relying on the host computer for software execu-
tion.

One of the main components of theACE2card is a con-
ventional computer, called the Embedded Processor Sub-
system (EPS). It its is based on a SUN microSPARC-IIep
processor [8], an implementation of the SPARC V8 speci-
fication [9]. This RISC runs at 100 MHz and has access to
64 MB of EDO DRAM and 1 MB of user-programmable
Flash memory (holding the boot firmware). Additionally,
the chip also provides a 33 MHz 32-bit PCI master inter-
face (including interrupt management), an implementation
of the SPARC reference MMU, and various real-time timers
and counters.

The PCI bus is used to communicate with a PMC [10] ex-
pansion connector and the on-board reconfigurable process-
ing unit (RPU). On theACE2card, this consists of two Xil-
inx XC4085XL [11] FPGAs having a capacity of up to
170,000 gates. Each of the FPGAs has access to a dedi-
cated 256k x 32b bank of SRAM memory. Using a fast
crossbar, the banks can be switched between the FPGAs on
a per-cycle basis. Also available are four 4k x 9b FIFOs
per FPGA to use as temporary buffers, e.g., in stream-based
computation.

In order to simplify the user logic, the RPU and the EPS
do not communicate directly over the PCI bus (complex
protocol, multiplexed data and address lines, fixed clock
speed). Instead, a PLX 9080 [12] PCI I/O accelerator bidi-
rectionally converts the PCI bus to/from a non-multiplexed
32b bus similar to the one used on the Intel i960 proces-
sor. While this bus has a much simpler protocol (consid-
erably easier to implement in user logic), it still achieves
PCI performance levels. As an additional plus, the i960
bus (also called “local bus”) runs asynchronously to the PCI
bus at any speed from 500 kHz to 33 MHz, thus matching
the design-dependent FPGA clock-speeds to the fixed PCI
clock.

The ACE2card attaches to the host as a full-length PCI
card. The host PCI bus is converted to the local bus using
another PLX 9080. By appropriately configuring the PLX
registers, transparent access from the host is possible not
only the RPU, but also to the EPS.

While theACE2card in itself already provides a very use-
ful platform for evaluating HW/SW codesigns (especially
due to the tightly coupled processor), and is in fact already
being used as target for an experimental fully automatic
HW/SW compile-flow [13], it has limitations in its origi-
nal form: The XC4085XL FPGAs are no longer close to
the state-of-the-art in FPGA architecture. They are limited
with regard to sheer logic capacity (current FPGAs reach
up to 3.2 Mgates [14]) as well as to configuration speed
and partial configuration ability. The last two features are

afrl
69

important when using FPGAs as flexible compute engines.
For this application, the lack of busmastering capabilities
for the FPGAs on theACE2card is also annoying. E.g., in
the experimental compile flow, data has to be copied ex-
plicitly to the RPU SRAMs before it can be processed by
the FPGAs. A more homogeneous memory model allowing
the RPU direct access to the entire memory space would be
desirable instead.

3.2. ADM-XRC

The Alphadata ADM-XRC card is a daughtercard fol-
lowing the PCI Mezzanine Card (PMC) standard [10]. It is
shown in the upper half of Figure 1 and uses theACE2card
as a motherboard.

In contrast to theACE2card, the ADM-XRC concen-
trates on providing a state-of-the art Xilinx Virtex or Vir-
texE FPGA connected to four fast memory banks. Our
current configuration uses an XCV1000 FPGA with a ca-
pacity of up to 1 million gates accessing four 128k x 36b
banks zero-bus latency (sometimes also called “zero-bus
turnaround”) SRAMs.

As with the RPU on theACE2card, the ADM-XRC re-
lies on a PLX 9080 to convert the PCI bus to the simpler
i960 bus. Now, however, the FPGA has full master ac-
cess to the bus and can transparently access data residing,
e.g., in the EPS DRAM. As before, this arrangement also
enables the asynchronous operation of the variable-clock
speed FPGA from the PCI bus. For further extension or
debug connections, the ADM-XRC also offers 34 pins of
user-programmable IO in the form factor of a SCSI-2 con-
nector.

For integration with theACE2card, we had to develop
code (running on the EPS) that attached the ADM-XRC
to the PCI bus and mapped its memory regions into the
microSPARC-IIep address space.

By combining both hardware components in this fashion,
we obtain an off-the-shelf platform having the strengths of
theACE2card (embedded processor, easy access from host),
and use the ADM-XRC to compensate its weaknesses (large
logic capacity, state-of-the-art FPGA, homogeneous mem-
ory model).

4. Software Architecture

Hardware is only one part of a prototypingsystem, soft-
ware (while often neglected) forms the other half. When
assembling our prototyping environment, this was the area
that required the most effort to arrive at a usable, tightly
integrated solution.

For theACE2card, the vendor offers host-side drivers
(Solaris and Windows NT) that map the various devices
(memories, PLXs, FPGAs) into the host filesystem. E.g.,

the EPS DRAM can be accessed using anopen() system
call, write() andread() calls will then exchange data
between the DRAM and the host.

However, for applications actually executing on the EPS,
the support was far more rudimentary: Their only means of
communication used the PLX9080 mailbox registers to sim-
ulate four “virtual serial ports”, which are then also mapped
to host devices. While useful for debugging, these high la-
tency and low bandwidth channels are unsuitable for any
practical I/O needs. No support was included for such crit-
ical operations as FPGA access and interrupt processing on
the EPS. Furthermore, not even the basic C library functions
(memory management, math, signal handling, etc.) were
available. These restrictions severely hindered the porting
of conventional C code to the EPS.

Since the ADM-XRC is intended as a general pur-
pose extension to all PMC-compatible environments, it did
not include anyACE2card-specific software. Only small
C fragments illustrating the transformation of Virtex bit-
streams into a downloadable form and the actual configu-
ration sequence were provided.

Our approach to removing these limitations is described
in the next sections and illustrated in Figure 2.

virtual
serial ports

mapped
memory

virtual
serial ports

User Application

PCIPCI i960
PLX PLX

ACE2API
POSIX

API
RTEMS

APIKernel

I/O Client

Host Filesystem

I/O Server

TSI Drivers

Figure 2: Software architecture

4.1. RTEMS

As a first step in presenting EPS applications with a more
familiar and complete run-time environment, we ported the
RTEMS operating system [15] to the EPS. RTEMS is a pre-
emptive multi-threading real-time operating system freely
available for a wide variety of boards and processors. It
is sufficiently lightweight (e.g., no virtual memory, effi-
cient direct hardware access, very short interrupt handling
latencies) that it remains suitable for small embedded sys-
tem. RTEMS furthermore includes a flexible model for I/O
drivers and a POSIX-compliant standard C library.

The port to the EPS was facilitated by the fact that
processor-level support for the SPARC V7 architecture was
already in the RTEMS 4.0.0 code base. At the low level of

afrl
70

this base port, we had to add EPS specifics such as memory-
management, cache control, interrupt handling, and real-
time clock access. For testing, we mapped the RTEMS con-
sole to theACE2card virtual serial ports.

At this stage, it was now possible to execute conventional
C programs on the EPS. I/O, was limited to interaction on
the virtual serial port, though.

4.2. Host I/O Access

While the limited I/O capabilities just described might
be sufficient for small embedded systems, our aim of us-
ing theACE2card/ADM-XRC combination as a target for
automatic HW/SW compilation requires a higher degree of
host integration. Specifically, many of the applications need
transparent read/write access to files residing on the host
filesystem.

While ad-hoc methods of transferring this data could
be used, we implemented a reusable mechanism providing
full access to host files and devices. It relies on a custom
RTEMS driver that forwards all I/O operations on non-local
devices to a server program running on the host.

This communication occurs by setting up a parameter
block in the EPS DRAM and sending an I/O request to the
host using one of the virtual serial ports. The I/O server
is awakened and then uses the TSI host-side device driver
to retrieve the parameter block from the mapped-in EPS
DRAM. Next, the I/O operation is actually performed and
any read data transferred back to the EPS through the shared
memory.

In this manner, an application running on the EPS can
access all data on the host (even devices, network mounted
volumes, pipes, etc.). Furthermore, since all three of the
standard I/O streams are also routed using this mechanism,
it is even possible to transparently pipe data from a host
application through the EPS and back to another host appli-
cation without any user intervention.

4.3. Hardware API

Instead of simply reading and writing hardcoded mem-
ory locations for access to the FPGAs, a dedicated set of
routines provides these operations in an easy-to-use and
portable manner.

Among the operations supported are the decompression
and fast loading of configuration bitstreams, the retrieval of
address mappings for the FPGAs and their associated mem-
ories, and the locking and synchronization of FPGA-based
computation with RTEMS threads. Additionally, the pack-
age also encapsulates board specifics such as interrupt han-
dling and programming the variable clock for each of the
i960 busses. All of these functions can operate regardless

of whether the target FPGA is in the RPU or on the ADM-
XRC.

4.4. Tools

Since the microSPARC-IIep of the EPS is fully compat-
ible with other SPARC V8-based computers (e.g., the SUN
SparcStation5), existing tool chains can be used to target the
EPS with only slight adjustments. In our case, we are rely-
ing on the GNU suite of C compiler, assembler, and linker
for the main flow. The resulting executables are then trans-
formed into a binary format suitable for downloading to the
ACE2card using the GNU binutils package. Our standard
compile flow wraps the binary in an envelope that automat-
ically starts the I/O server on the host, performs the down-
load, starts the application, and establishes contact with the
I/O client on theACE2card. Thus, running a program on
the EPS is accomplished transparently by simply typing its
name on the host command line.

For debugging, one of the virtual serial ports on the EPS
is used by theACE2card firmware to implement the GNU
GDB remote debugging protocol. In this manner, EPS ap-
plications can be comfortably debugged from the host using
GDB and enhancements like DDD.

For hardware creation, we employ conventional logic
synthesis tools starting from Verilog HDL or an experimen-
tal compiler translating C into a hybrid HW/SW applica-
tion. In both cases, the Xilinx M2 EDA tools are used
as a back-end for creating the bit-stream files, which are
then compressed and converted into ELF object files that
are directly linkable into the EPS application. This ap-
proach is preferable over the standard solution of convert-
ing the bit-stream files into a C program (hex dump) which
is then compiled and assembled before linking: For a cur-
rent medium-capacity FPGA such as the Virtex 1000, bit-
streams are 770KB in length. The resulting C file using
the conventional approach would thus have a length of ca.
3.8MB. Especially when multiple configurations need to be
integrated in this fashion, the compile and assembly times
become unacceptable. Compare this with our way of com-
pression and ELF generation: A 770KB bit-stream is turned
into a 12KB linkable ELF object in a fraction of a second.
This bit-stream can be decompressed back into a format
suitable for downloading in less than 100ms on the EPS.

5. Conclusion

In this work we described an approach to obtain-
ing a very flexible platform for prototyping hybrid hard-
ware/software systems. We achieve our aims of tight hard-
ware/software integration, large hardware capacity, and
ease-of-use through the combination of two off-the-shelf

afrl
71

hardware products with the addition of a powerful yet light-
weight software layer. The system has proven very success-
ful both as a conventional prototyping environment as well
as the target for an automatic hardware/software compila-
tion system.

All of the custom-developed software (e.g., PCI config-
uration code, RTEMS port, I/O system, hardware API, and
tools) is available on request from the author.

References

[1] Cadence Design Systems, Inc., “CoBALT”,
http://www.quickturn.com/products/
cobalt.htm , 1999

[2] Aptix Corp., “System Explorer MP4”,http://
www.aptix.com , 1999

[3] Goering, R., “ Quickturn boosts emulation to 20M
gates”, EE Times, No. 1036, 23 Nov 1998

[4] Koch, A., Golze, U., “A Universal Co-Processor for
Workstations” inMore FPGAs, ed. by Moore, W.,
Luk,W., Oxford 1994, pp. 317-328

[5] Koch, A., Golze, U., “Practical Experiences with the
SPARXIL Co-Processor”,Proc. Asilomar Conference
on Signals, Systems, and Computers, 11/1997

[6] Virtual Computer Corp., “H.O.T. II Development Sys-
tem”, http://www.vcc.com , 1998

[7] Annapolis Micro Systems, Inc., “WILD-
STAR High-Speed DSP Boards”, http:
//www.annapmicro.com , 1999

[8] Sun Microelectronics, “microSPARC-IIep User’s
Manual”,http://www.sun.com/sparc , 1997

[9] Weaver, D.L., Germond, T., “The SPARC Architec-
ture Manual, Version 8”, Prentice-Hall, 1992

[10] IEEE, “Draft Standard Physical and Environmental
Layers for PCI Mezzanine Cards: PMC”, IEEE Stan-
dard P1386.1, 1995

[11] Xilinx, Inc., “The Programmable Logic Data Book”,
http://www.xilinx.com , 1998

[12] PLX Technology, “PCI 9080 Data Book”,http://
www.plxtech.com , 1998

[13] Harr, R., “The Nimble Compiler Environment for
Agile Hardware”, Proc. ACS PI Meeting,http:
//www.dyncorp-is.com/darpa/meeting/
acs98apr/Synopsys\%20for\%20WWW.ppt ,
Napa Valley (CA) 1998

[14] Xilinx, Inc., “Virtex-E 1.8V Field-Programmable
Gate Arrays”,http://www.xilinx.com , 1999

[15] On-Line Applications Research Corporation,
“RTEMS - Real-Time Executive for Multiprocessor
System”,http://www.rtems.com , 1998

afrl
72

73

Appendix C. Porting RTEMS to the ACE Hardware Platform

Chapter 1

Introduction

This work describes the port of the RTEMS RTOS to the ACE hardware. Also
described is the file I/O layer which was added to RTEMS in order to make the
resulting system more usable. RTEMS/ACE is a real time operating system
(RTOS) which is in use in research of adaptive computer systems (ACS) at the
Technische Universität Braunschweig, Dept E.I.S.

1.1 Adaptive Computer Systems

Adaptive computer systems are systems which also carry user programmable
hardware. That means that, while a program is running, the hardware can
be reconfigured to provide the best environment for the program. The goal is
to make the hardware run the computation intensive parts of the program,
such as inner loops or vector operations.

Hardware has an immense advantage over conventional software because
the configurable logic does not limit the amount of parallel execution in the
same way conventional processors limit the parallel issue of instructions.
When a current high-end CPU is doing vector operations, the amount of par-
allel operations is limited by the amount of execution units which can execute
the machine instructions. Many processor manufacturers try to overcome
that limitation by providing special execution hardware which provides basic
SIMD capabilities. MMX and Altivec may serve as examples here.

However, when the software can utilize user configurable logic, the amount
of parallelism can be greatly increased since there is no limit to the amount
of parallel execution units other than the number of available gates and a
limited bandwidth to memory.

74

1.2 What Is An ’Embedded Operating System’

RTEMS is a small real time operating system designed for the field of embed-
ded control. Historically, the process of using software in embedded systems
started with the first TI pocket calculators which had a small microprocessor
that did the calculations by software algorithms rather than hardware. This
saved a lot of logic space and, by reducing power consumption, achieved a
longer battery life.

These systems were a combination of hardware and software, which to-
gether made up a usable device. When the hardware improved later, it was
possible to have one piece of hardware solve many tasks by executing differ-
ent software. This made it economically worthwile to spend more effort in
developing hardware. This paid off since the more powerful hardware could
manage an even wider range of tasks; it was reusable.

By abstracting the application completely from the real hardware, it was
possible to bootstrap the application on a different computer system, such as
a Unix workstation or a Windows PC, as long as the same interface was used.
This greatly simplifies the process of development because a real debugger
can be used on the application. The turnaround times are also greatly reduced
because of more powerful machines used for development. Another reason for
the use of cross development is that most the target hardware is unable to
run a decent compiler system 1As the service demands of the applications
were increasing, the hardware abstraction layer soon became a full featured
operating system.

The requirements of an embedded application are different from those of
a desktop application. For example, permanent storage facilities such as disk
drivers are not needed in a cell phone, virtual memory or memory protec-
tion are superfluous in a car motor control. The embedded operating systems
evolved differently from the desktop operating systems. RTEMS is a multi-
tasking real time operating system for embedded control that was chosen to
be ported to the ACE card.

1Compiling the software for a car motor management on the car motor management is not
a Good Thing.

75

Chapter 2

The ACE Hardware

The ACE cards are suitable as platforms for research on adaptive computing.
Therefore, they hold not only a dedicated CPU and a local memory subsystem
but also programmable logic circuits. Figure 2.1 shows the architecture of the
ACE hardware.

uSparc II ep
100MHz

DRAM

Flash
Thermostat

XC4085XL XC4085XL

I/O
R

ea
r

P
an

ne
l

4 4kx9

SRAM
256k x 32

SRAM
256k x 32

4 4kx9

Interconnect
Interface

Hardware IO

SRAM Subsystem

H
os

t P
C

I B
us

ACE2 Card
TM

64

32

Clock

PCI9080 PCI9080

FIFOFIFO

1 M

PCI Mezzanine Card

XC4085 : Xilinx Local Bus Interfrace

Snoop
Bus

RC Local Bus
(10−33 MHz)

Local PCI
(33 MHz)

Figure 2.1: The ACE hardware

76

As shown in figure 2.1, the ACE2 cards carry two Xilinx XC 4085XL FP-
GAs. The predecessor of the ACE2, the ACE card had two XC6264. Both
cards will collectively be called ACE in this document.

For a fast memory access the FPGAs are connected to two dedicated mem-
ory banks of 256kx32b each via a crossbar-like switch. This enables a quick
swapping of the individual banks between FPGAs One of the FPGAs also has
a snoop bus connected to 1 MB of flash memory that contains the boot code
for the microSparcIIep CPU which is the controller of the whole card. On the
ACE card there is a PCI Mezzanine Card (PMC) slot which is connected to the
same FPGA as the bus snoop logic. To operate correctly, the ACE cards need
a host computer system. That means they need to be plugged into a PCI slot
of a host computer that can provide services the not implemented. This re-
quires support from the host computer’s OS. The Solaris version comes with a
kernel driver module that maps the memory banks of the ACE to device files
in /dev/ . This module also supplies device files for the control registers and
virtual serial communication lines provided by the ACE firmware.

2.1 The ACE Firmware

The on board microSparcIIep CPU boots from flash ROM supplied for that
purpose. After setup it waits for commands coming from the host computer. A
program running on the host transfers the binary image into the microSparcI-
Iep CPU dedicated memory and tells the firmware at which address to start
execution. This entry point defaults to 0x100000 because the lower megabyte
of memory is used by the firmware for internal data and stack space. The
memory area marked as Heap in figure 2.2 is unused and can be allocated by
memory management code such as malloc() (if the application actually uses
it).

Should the application return control to the firmware for some reason,
maybe because it has finished its execution, the firmware resets the ACE card
and waits for the next application to be started. The firmware supplies a com-
plete set of interrupt vectors including the very important window-underflow
and window-overflow interrupts of the SPARC CPU. Also included is a GDB
remote debugger hook that enables the GDB debugger to source level debug a
currently running application including memory dumps and register values.

77

Heap Memory

0 MB

End

1 MB
User Application

Trap Vectors
Firmware Code

8KB

Initial Stack

Figure 2.2: The ACE Memory Map

2.2 Communication

Since the ACE card is not a complete computer on its own, a way to exchange
information with other devices is required. The obvious link between the
ACE and the rest of the world is the PCI connector which connects to the
host computer’s bus system. This connection has to carry the data that needs
to be transfered to the ACE and back to the host. This data includes the
FPGA configuration and the machine code for the microSparcIIep CPU. Re-
sults produced by successful program runs on the ACE need to go back to the
host system for visualization or further processing. The two main methods to
transfer data between the ACE and the host are shared memory and Virtual
Serial Ports (VSPs).

2.2.1 Virtual Serial Ports

One way to pass information is to use the Virtual Serial Ports (VSPs) which
are implemented by the PCI part of the ACE card. There are four serial
ports available 1 which can be used for transfers. The ports provide real full
duplex channels with interrupt signals to the host computer. On a host system
running Solaris, these ports can be accessed by device files which are used
like serial interfaces. On the ACE, the programming of these ports is a bit

1The channel with number one is used implicitly by the remote debugger, so using it and
debugging at the same time will not work.

78

more complicated, but a reference source exists in the TSI firmware archive
(vsp.c). The VSP lines can transport data in both directions, but only at
very low rates with high communication latencies. Also, the ports available
on the ACE/ACE2 hardware are known to be buggy. (For details please refer
to section 2.4).

2.2.2 Memory Mapped Communication

All memory banks on the ACE card are mapped into the address space the
PCI slot acquires during the host booting process. By memory read/write
accesses to the correct address range inside this PCI space, all memory loca-
tions on the ACE card are accessible from the host. This includes not only
the DRAM memory dedicated to the microSparcIIep CPU, but also the local
memory blocks which are connected to the FPGAs.

In this way, the program images are transfered to the CPU memory and
the hardware configuration to the FPGAs. Running a real Input/Output (I/O)
protocol relying only on memory mapped data structures is inefficient due
to the lack of interrupts or other synchronizing methods: It would involve
polling of some kind, which would drastically reduce the performance of one
of the peers. For larger and less frequent transfers, this method is good be-
cause of the big speed advantage over the one-byte-at-a-time protocols, such
as VSPs (see 2.2.1). The drawback of this protocol is that it is only really us-
able by the host computer because accessing the host memory from the ACE
card is not possible in a trivial way. Even if it was possible, the hosts oper-
ating system might (very likely) implement some sort of virtual memory and
memory protection which requires memory mapping by a Memory Manage-
ment Unit (MMU). Currently, a MMU is part of the processors used as CPUs
in todays workstations. The user processes have no way to tell what physical
addresses they work on nor if their memory space is ’in-core’ 2, paged out, or
even whether it is linear at all 3.

2’in-core’ means that the memory page’s content is currently placed in main (physical)
memory. Pages not ’in-core’ have been written to secondary storage by the OS to free the
physical memory page which can then be assigned to a different process.

3For more information on modern computer memory mapping please refer to [1] or [5]

79

2.3 ACE Support Programs

Along with the ACE hardware comes a set of tool programs. These programs
are delivered in source form for the purpose of documentation and to serve as
a basis for other programs which are to utilize the ACE cards. These tools are

� aceiiclock/aceclock
The local bus clock on the ACE card can be set with this tool within a
range from 10 to 33 MHz.

� aceiidownload/acedownload
This tool is supplied to load program image files into the memory of the
microSparcIIep CPU on the ACE card . It loads the file to the DRAM
and then starts ACE execution.

� aceiifilter/acefilter
This tool can be used to strip the header from a bit stream file that is
to be written into one of the XILINX FPGAs. It creates a raw output
file that then can be uploaded with the aceiixilinx tool program. The
bitstreams can be produced with any design software that supports the
appropriate chip type.

� aceiiflash/aceflash
The ACE card has a 1MB flash memory for the firmware code. If a
change to the firmware is needed, a new image can be compiled. The
write operation to the flash memory is then performed with this tool.
Using it overwrites the firmware which is currently being active. Use
with extreme care.

� aceiireset/acereset
If a program currently running on the ACE card is not terminating as
expected, the aceiireset tool can be used to reset the ACE card . The
memory image will not be disturbed so a post-mortem debugging of the
program should be possible.

� aceiitemp/acetemp
Under heavy load and in a tight enclosure, heat is the foe of any hard-
ware. To keep an eye on the current hardware temperature, the acei-
itemp utility can be used. Please be aware that the program displays
the temperature in Fahrenheit.

80

2.4 Known Bugs

The TSI provided VSP driver for Solaris is known to have bugs. Trying to use
the Unix system call ioctl() on the file handle that represents the serial
connection to set a timeout is not possible. This can drastically disturb the
uptime of the host computer because the only way to interrupt the read from
a dead line is to issue a reboot. This may be acceptable for a single user
desktop system, but is unacceptable for a multi-user system in a scientific
environment.

81

Chapter 3

RTEMS, a Real Time Operating
System (RTOS)

3.1 RTEMS Overview

A typical RTEMS OS and application consists of functional blocks which deal
with certain situations. The block structure comes from the modularization
of the system on the source tree.

3.2 Architecture

As shown in Figure 3.1, the application and the OS form one binary. The
OS is statically linked to the application to form one unit. The Hardware
Abstraction Layer (HAL), shown in italics, will be discussed in greater detail
in Section 3.3.

An complete RTEMS application consists of several parts :

� Application Code
The application code written by the ”user” of the system. It contains the
actual algorithms which are needed to solve the problem. The code in
the application layer is not part of the operating system. However, it is
possible that some code which is used to extend the operating system is
placed in the same source files.

� OS Interface Layer
This is the layer which presents the interface to the application. The

82

RTEMS OS Interface Layer

Device Drivers HAL

RTEMS Core

Application Code

RTEMS Structure

Hardware

Figure 3.1: The RTEMS Structure

interface layer itself deals with different parts of the core and drivers.
This simplifies the application as the programmer does not need to know
details beyond the interface definition. Parts of the OS that are not part
of the interface can change from one release to another, and making
assumptions about them breaks the application should a new release be
needed.

� RTEMS Core
The core part contains the scheduler, the resource managers and some
internal parts of the operating system. Calling the core directly is possi-
ble, but most of the time unnecessary and dangerous. Access to the core
data structures should be done by calls to the interface layer.

� Device Drivers
Device drivers are parts which are dependent on some kind of hardware,
but not the actual processor. Their code interfaces with hardware and
might have special requirements at runtime, such as having all inter-
rupts disabled during its execution. Calls to the device drivers can be
done by the core, the interface layer, or in rare cases, by the application.

� HAL

83

By separating all the parts of the operating system that are actual
hardware dependent into a so called HAL, porting to a new platform
is greatly simplified. The HAL is described in more detail in Section 3.3
and Figure 3.2 of this document.

� Hardware
Every modern and portable application should not require knowledge
about the actual hardware (CPU, memory sizes/location, interrupt con-
trollers, . . .) it is executing on. Well written software only accesses
the hardware by using the operating system. Since modern operating
systems are portable also, they access the hardware with a dedicated
Hardware Abstraction Layer. The only parts of RTEMS which come into
contact with the hardware are the device drivers and the HAL. ”Hard-
ware ” in Figure 3.1 does not mean the hardware part of an adaptive
computing application.

3.3 HAL

Like all software that is intended to be portable, RTEMS has a Hardware
Abstraction Layer (HAL). Its purpose is to keep all hardware dependent parts
of the software contained in a small set of source files. This forces accesses to
the hardware to use an interface that can be defined once and then controlled
by the source maintainer. In this way all software that uses this interface can
work with a different HAL without being changed, as long as the new HAL
implements the same interface along with the same semantics.
The RTEMS HAL consists of several parts which are arranged as described in
figure 3.2. The HAL is separated in two major parts which are independent
from each other. Both parts have a well defined interface and have to be
implemented for a port to a new platform.

� CPU Package
The CPU Package contains all the CPU dependent code of the HAL.
It contains the interrupt code and also contains the code for the task-
switching routines. It implements the interface the rest of RTEMS needs
to access CPU dependent services in a CPU independent way 1. This
makes it easier to write core code that works on all processors. Only
really weird hardware architectures need fixes in the non-CPU package
parts of the operating system.

1The higher layers of RTEMS refer to hardware dependent parts by function calls and by
macros. This abstraction has to be provided by the packages.

84

RTEMS HAL

C
lo

ck
T

im
er

C
on

so
le

St
ar

tu
p

BSP

CPU Package

Figure 3.2: The RTEMS HAL

� BSP
All hardware dependent parts of the HAL are organized in the Board
Support Package (BSP). It consists of the modules clock, timer, console
and startup.

– clock
The clock module contains the code to setup the clock and install the
timer controlled interrupt that is needed for the pre-emptive mul-
titasking to work. The main entry points are Clock initialize
and Clock exit . The entry point Clock control is used to trig-
ger the interrupt code and to replace the interrupt vector code with
a new routine to be called. The (private) routine Clock isr may do
other bookkeeping if desired, but has to call rtems clock tick to
notify the RTEMS Kernel of the interrupt.

– timer
To support a long running timer that can be used for benchmark-
ing the module timer initializes or simulates a long running timer.
Simulation of a timer may be needed if the hardware does not
supply a sufficiently large interval timer. The main entry points
are Timer initialize and Read timer . The Timer initialize
code is called from the RTEMS core if timing is required by the ap-
plication. The following calls to Read timer should then return
timing information. Since this module is hardware dependent, no
unit is specified in which the time is measured. The total time can
be calculated from the clock frequency of the timer, which can vary
from port to port.

85

– console
The purpose of this module is to provide I/O functionality for the
stdin and stdout available to the RTEMS application. After the
initial call to console initialize the console should be up and
working. The important entry points are console read and con-
sole write . As the names suggest, these functions should do I/O
to the console. The actual mechanism used for the I/O is not speci-
fied, so this module is placed in the hardware-dependent part.

– startup
Hardware dependent parts of the startup process are placed in the
startup module. This module consists of the following source files
on a normal RTEMS installation:

� bspstart.c
Main entry points in this file are bsp pretasking hook()
and bsp start() . The bsp pretasking hook() routine is
responsible for initializing any data structures which are C-
library extensions to the default BSP. The prime candidate here
is the libc , whose memory allocator needs to be initialized.
This routine is called before drivers are initialized. To perform
important initializations before the kernel gets started the rou-
tine bsp start is used. Its main purpose is to setup the mem-
ory ranges and initialize the workspace of RTEMS so that the
internal RTEMS memory allocator can be used by the kernel it-
self. This routine needs to divide the memory space that is unoc-
cupied by the application binary between the RTEMS memory
allocator and the libc memory allocator (malloc() , . . .).

� bspclean.c
In case the embedded application terminates, some special ac-
tions may need to be performed. While initializing special
hardware is done in the bspstart.c source, the correspond-
ing shutdown actions occur in bspclean.c . The main routine
here is bsp cleanup .

� setvec.c
Main entry point here is the routine set vector , which usually
is a wrapper to the CPU dependent code. This wrapper is used
to be able to introduce board dependent code into the interrupt
handling while keeping the code itself CPU independent also.

� startup.S
This is the main entry point into the entire binary. It is usually
a very small piece of code that is dependent on both; the CPU

86

used and the board. It depends on the board simply because
it must ensure that the resulting object code ends up in the
correct place so that the routine boot card gets executed. How
this is done depends on the processor in use. On a SPARC, like
on most RISC processors, a dedicated ’Power On Trap’ is called.
This trap code is the entry into the system initialization process.
Since no other setup is done, one of the first things this code has
to do is creating a stack segment.

87

3.4 Startup Process

Figure 3.3 is a simplified diagram of the startup process that a typical RTEMS
application performs. The syntax of the diagram was inspired by UML [2]
[3]. The topmost line lists the RTEMS functional blocks which contain the
part listed below. Program flow from one module to another is documented
by an arrow from the source of the call to the target module. The oblongs
describe the lifetime of an object, in this case the stack frame. Figure 3.3 does
not only describe the RTEMS startup process but also includes some details
about the RTEMS/ACE layout which is described in more detail in section
4. The normal RTEMS does not distinguish between User Application and
User Interface; the User Interface is part of RTEMS/ACE and hides some
differences between RTEMS and other OSes from the User Application.

Interface

Kernel
Kernel

Interface

User

Application

User
BSP

bspstart.c bspcleanup.c main.c mymain.c

boot_card()

main()

Init()

rtems_initialise_executive_early()

bsp_start()

startup.S exinit.c rtems_client.c

Timer Init

Device Drivers

bsp_cleanup()

Figure 3.3: The Startup Process

88

The startup process depends on the CPU used. How the first executable
instruction is passed to the processor depends on the processor type and the
board hardware. Usually, the first entry point is placed in some small assem-
bler source that does basic hardware setup. This setup includes fundamental
things like providing a stack pointer for the programming environment but
also more complex code that performs setup operations on the memory inter-
face. After the hardware is set up and the software environment is initialized
so that normal C code can be executed the flow of control is passed to the
RTEMS kernel by calling boot card .

The routine boot card belongs to the portable part of RTEMS. More hard-
ware dependent setups are performed by calling the board-specific routine
bsp start . This routine is part of the BSP and has the duty to initialize
any hardware that is part of the complete system and which is needed to be
in working order when the higher levels of the driver system are about to
be initialized. A good example for this kind of hardware is a serial connec-
tion hardware which can be useful to printout debugging messages during
the testing period. As an example, the initialization of the multitasking timer
is part of figure 3.3.

After initialization has finished, flow of control is returned to bsp start .
The bsp start then calls rtems initialize executive early to initial-
ize the system. This routine initializes the various parts and handlers of
RTEMS. The initialization of the device drivers is picked as an example in
figure 3.3 2. After all initializations have been performed, multitasking is
started. RTEMS defaults to the name Init() for the main routine in the
user applications. A user may decide to add additional threads to his appli-
cation. The system will continue to multi-task until the first user process
(main()) terminates, then RTEMS will begin shutdown operations. These
involve killing of all remaining tasks and calling atexit() functions. The
cleanup process then continues by calling bsp cleanup to shutdown the
hardware which was initialized by bsp start in the very beginning. Flow
of control is then returned to the system startup stub that passed control to
boot card , normally executing some sort of halt or stop machine instruc-
tion to shut the CPU down. This process is dependent on the hardware being
used and the task that hardware has to perform. For example, when shutting
down services of some hardware which is difficult to reach, such as satellite
systems, a reboot might be used here instead of a simple halt 3.

2The placement of the device drivers may be misleading, they are not part of the user
space; the user application only supplies a table where the needed devices are recorded and
only those are initialized.

3Pressing the reset button on a satellite system can prove difficult.

89

Chapter 4

RTEMS On The ACE Platform

The main task of this work was to port an operating system to the ACE and
ACE2 cards. For this, a real time operating system which is described earlier
in this study was chosen: RTEMS. This decision was based on some require-
ments and how each candidate matched them. We considered the following
aspects as important:

4.1 Requirements

� Source
RTEMS is available in source form and ready to handle programs writ-
ten in C/C++ or ADA. Since most programs which will have to work on
the ACE are written in C, this fact is important. Having RTEMS in C
also means that the interface is compatible.

� Fitness
RTEMS is easy to compile and install since it is written in C. The tools
used for this are widely used and have proven stable and efficient. This
would not be the case for some esoteric language that is only ”spoken”
on one system 1. The distribution contains configuration scripts for the
setup of RTEMS as for the generation and installation of a cross compile
system for the selected hardware. This one is based on the GNU com-
piler system which has proven to be adaptable to many kinds of proces-
sors and which is a robust system for use in production work.

1’Smalltalk’ may be an example here.

90

� Price
RTEMS can be obtained free of charge after registering as a user of
RTEMS from the URL of On-Line Applications Research Corporation.

� Portability
Since RTEMS is targeted at embedded control, the HAL is strictly sepa-
rated and quite small. It is split between the HAL for the current board
and another one for the processor hosted on the board.

� Scale
RTEMS is able to deal with multitasking applications, can use multiple
CPUs and has a clean way to add more drivers to the system without
the need to modify vital parts of the operating system. It does not sup-
port virtual memory or memory protection, but these are not needed.
Because the FPGAs which are placed on the board perform memory ac-
cesses on their own. Since they do not know about the current mapping
of the main memory there would be considerable difficulties in letting
them perform direct memory accesses in virtual address space.

� low overhead
RTEMS has no separated user and system mode and no time consuming
switching between environments. The interrupt latency and the task
switch time are short.

4.2 RTEMS, pro and contra

RTEMS does not support the loading of program binaries under OS control,
it is statically linked with them. This stems from its roots in the area of
embedded control where the operating system and the user application are
one binary which is written to ROM space. There are some reasons against
and for this one-binary approach to be used on the ACE cards . Following is
a brief discussion with more reasoning whether an issue is important or if it
implies a limitation that can be ignored.

� pro:

– Versions
All executables are statically linked with their operating system.
So, after being tested, a change to the operating system does not
concern the application. If it was working before, it will continue to
do so.

91

– Space
There exists only one namespace in the binary which contains both
operating system and user application. Many support functions are
present only once because the link editor will only include one sym-
bol of a name into a binary. This saves memory space on the limited
memory of the ACE Card. Also, only code parts actually used should
be added to the final binary by the link editor. This reduces memory
usage in the running application.

– Hardware
The RTEMS is intended to serve as platform for programs which
use the FPGAs on the ACE cards. Since these are atomic resources
which are not easily shareable, a system service would be necessary
to provide fast and easy access to them. Because speed is a critical
point here, an abstraction layer could have easily absorbed all the
performance increase. It would also have forced the programmers to
use a very different way of dealing with them which would consume
more runtime. By not allowing for multiple applications running
concurrently while still allowing multitasking inside the applica-
tion the resource can only have one owner. The program does not
need to query the current use permissions and is therefore faster.

– Complexity
Because the application is linked to the operating system and the
final binary is relocated to a fixed address in the memory space of
the microSparcIIep , there is no need for some kind of application
loader. Resource tracking is also unneeded since all applications
are ended by a complete shutdown of the operating system. No
allocation can persist beyond that.

� contra:

– Versions
Due to the statically linked nature, enhancements in the operating
system area of an application are only possible by recompiling or
relinking the binary.

– Space
All binaries on the storage media of the host system have the op-
erating system linked to them and so it consumes storage capacity
every time it is used.

– Multiuser
Since a computer can only run one kernel at one time, it is not pos-

92

sible to run multiple applications on one ACE Card. This can limit
the productivity of a complete system.

To sum it up, one can say that the current situation is a good tradeoff
between the pro- and contra arguments. If it were possible to increase the
performance or usability of the ACE Card by using host resources, this was
done almost every time. This is justified since host resources are more abun-
dant and easier upgradeable than client resources.

93

Chapter 5

Porting RTEMS to ACE

The porting process of RTEMS to the ACE hardware is described in the fol-
lowing sections. All filenames are set in the typewriter font and are relative
to the install directory.

5.1 How to port

The porting process of RTEMS is straightforward. After obtaining the
source code and extracting it, some subdirectories are created below the
directory which was chosen as the root location. The directory named
rtems-4.0.0/src/c/lib/libbsp/ contains subdirectories which hold the
so called Board Support Packages (BSPs). A good start in porting is to create
a new one in the correct CPU directory. Since the ACE cards use the mi-
croSparcIIep CPU as main processor, the correct place for the RTEMS/ACE
BSP is
rtems-4.0.0/src/c/lib/libbsp/sparc/ACE2 . Inside this directory
some more directories need to be created for the clock , console , include ,
etc. A directory listing of the ACE2 directory looks like this:

Makefile bsp_specs console startsis timer wrapup
Makefile.in clock include startup tools

� Makefile is generated from

� Makefile.in during the build process. Makefile.in contains the defini-
tions which files and directories are present and vital for the build.

94

� bsp specs contains definitions for the setup. The best result can be
obtained by modifying an already existing bsp specs file from another
target.

� console is a directory that contains the hardware dependent code for
the RTEMS console device.

� startsis is a directory containing the very low assembler startup code.

� timer is also a directory, it contains the hardware dependent driver code
for the RTEMS timing facilities.

� tools is an empty directory for the ACE port. It may contain tools for
other porting endeavors, however.

� clock is a directory containing the hardware dependent code for the
RTEMS clock device.

� include is a directory that contains the include files which define the
hardware. Most notable is the bsp.h file that defines several constants
for the rest of RTEMS.

� startup contains the files bspstart.c and bspclean.c along with
some tool sources (setvec.c, spurious.c) and the file linkcmd
which is the linker command file used in building the final binary.

� wrapup is the directory that contains the final makefile for the BSP. This
makefile has to create the final BSP package that can be used in the link
phase.

The specific microSparcIIep CPU is not directly supported by RTEMS, but the
general SPARC architecture is. The SPARC CPU package already present can
then be reused, reducing the port to the BSP package which interfaces with
the actual hardware. The file bsp specs contains the gcc specs for building
RTEMS applications.

Another file which needs to be created is
rtems-4.0.0/make/custom/ACE2.cfg . It contains the configuration
definitions for the rest of RTEMS. Here can be selected if, e.g., support for
network sockets is to be added or if ADA support needs to be compiled in.

All in all the porting process is straightforward and the documentation
found at the OAR web page is sufficient to do the port. The hardware drivers,
however, need documentation which is not available from OAR but from the
hardware manufacturer in question.

95

5.2 Modifications to the main source

During the porting process, some quirks came up which needed small changes
to the main source tree of RTEMS. They were needed because some interme-
diate versions were not compiled with optimization enabled in the setup file.
Other modifications were needed because the later versions were compiled
with a new version of the GNU compiler which is a bit stricter syntax wise in
some situations. The changes were:

� rtems-4.0.0/c/src/exec/score/inline/isr.inl
This is an include file for C, despite the nonstandard filename extension.
It contains some code patterns and functions which should be in-lined. If
compilation without optimization is selected, this produces linker errors
because of multiple defined symbols. A ”static” was added to fix this.

� rtems-4.0.0/c/src/exec/score/cpu/sparc/sparc.h
Here some constructs were added to make the microSparcIIep known
here at compile time. If not done, some source codes will complain about
missing definitions.

� rtems-4.0.0/c/src/exec/score/src/wkspace.c
The code has been changed to output the dots and asterisks during the
clearing of the main memory. Every character represents one megabyte
of memory to clear. The ”...”s are printed at the beginning of the memory
clear loop and after each megabyte is cleared, the corresponding ”.” is
overwritten with a ”*” as a progress indicator.

� rtems-4.0.0/c/src/lib/libbsp/shared/main.c
The default entry point into a RTEMS application is called Init and not
main . One goal in porting RTEMS to the ACE was to make normal C
programs compile and work without change, but the symbol main was
already used in RTEMS. To solve this dependency, the RTEMS routine
has been renamed to Main . Now the problem with GNU C++ on some
target platforms is that the main function calls all the global construc-
tors by calling ” main”, which is now happening at a different place. So,
if a device driver which is part of the application relies on an object being
initialized, this assumption is now broken. The device driver initializa-
tion code is called before the ”main” function had a chance to call the
constructor list.

The consequence from this is that no C++ device driver is allowed.

96

� rtems-4.0.0/c/src/exec/score/cpu/sparc/cpu asm.s
Code has been added to stop the timer during a call to the context switch.
This was done to provide better accuracy to the benchmarking timer.

� rtems-4.0.0/configure
This file needs modifications because it checks for a cross compiler in an
inelegant way. It simply tries to compile a file using the cross compiler
and then starts it, assuming that the host operating system will refuse
to load and start it in case of a cross compiler. This is not true for a
SPARC-equipped host. Here, this binary gets executed and drops core
because of illegal instructions, ending the configuration procedure with
a core dump.

5.3 Memory Map

The RTEMS memory map on the ACE hardware is divided into the firmware
part and the RTEMS part of ownership. The lowest megabyte is under control
of the ACE firmware. Only the interrupt vectors are modified by RTEMS.
Some free memory at 512K is touched by the code that copies the command
line arguments over to RTEMS.

The binary program is loaded starting with in the first location of the sec-
ond megabyte of the main memory by the linker setup script. That leads to the
first machine instruction being relocated to the address 1048576. The linker
collects all machine code together. Following the code area are DATA- and
BSS sections.

The RAM space beyond the last BSS address is used for dynamic memory
allocations. Both, RTEMS and the C library have their own memory allocator
code, so the memory space needs to be divided between the two allocators.

The ACE RTEMS port sports a memory size auto detect routine which can
find out how much memory is installed and makes the correct division be-
tween RTEMS space and user space: Beginning with 12 megabytes, the code
tries to perform a write to the next memory word. Depending on the memory
controller decode logic in use, this word will not be written or will be placed in
memory at location zero when the memory size is reached. For speed purpose
this test is done in steps of 4 megabytes each. Now, if the end of memory is
crossed, the control word will not be written to that location and a read from
the same place will return a different value, often 0xffffffff. If the memory
decoding logic treats the memory as a loop, the write will modify memory lo-

97

cation null, which will also be detected. In both cases, the maximum memory
size will be detected correctly.

Figure 5.1 describes the current memory layout which is enforced by the
limitation of the so called ”blessed” window. That window comes from the fact
that the FPGAs on the ACE currently cannot access memory beyond the 16M
boundary because they only have 24 address bits from the bus. The last 64
KB memory area from that window is also reserved because it contains the
register sets of the PMC PCI controller (See Figure 2.1 for details) 1.

These limitations force the memory map to be rather rigid instead of be-
ing able to distribute memory dynamically. Dividing of the memory between

Interrupt Vectors

Firmware Code

Communication Area

Initial Stack Memory

User Application +

RTEMS Kernel

C Runtime Memory Heap

RTEMS Memory Heap

PMC PLX Register Window

512 KB

___rtems_end_memory

___rtems_start_rtems_heap

___rtems_start_c_heap

NULL

8 KB

1 MB

Figure 5.1: The RTEMS/ACE Memory Map

RTEMS and the C library is necessary because both, RTEMS and the libc
1The problems originating from the limits of that ’blessed’ window attracted some other

names for that address range. Many of them should not be used on sacred grounds.

98

memory allocator are different. RTEMS uses its own memory management
while user code is supposed to malloc() its storage needs. If both would use
the same memory allocator code the division into two kinds of memory would
be obsolete.

A positive aspect of the divided memory architecture is that the usual bugs
introduced by dynamic memory allocation2 are more likely to damage the user
data structures, keeping the system alive. This is no solution to the problem
of wild pointers but it can help letting the code run long enough to detect the
problem and output some kind of assert(). Another important reason is that
the FPGAs can only access their ’blessed’ window and so all memory alloca-
tions which belong to the operating system should be handled by a memory
allocator that does not use up the ’blessed’ window memory. The user pro-
gram can choose where to the dynamically allocated memory will come from.
If the allocation is done by malloc() , the memory will be taken from the C-
Heap. If the RTEMS memory functions are used the allocation is served by
the RTEMS-Heap.

A user program can find out more about the currently active memory setup
by reading the global variables which are pointing to interesting points in the
memory map. These variables are :

char* ___rtems_start_c_heap;
char* ___rtems_start_rtems_heap;
char* ___rtems_end_memory ;

As figure 5.1 shows, between the actual RTEMS heap and the end of the C
library heap is a gap of 64 KB for the PLC PCI registers.

5.4 ACE Firmware

As figure 5.1 shows, the lower megabyte of address space is occupied by the
original ACE firmware. The firmware by default expects the user program at
the load address of one megabyte and starts execution there. By keeping this,
it was possible to use most of the firmware features for free. That greatly
simplified the start process of the RTEMS operating system. There was no
need to add the PCI bus setup to the startup code, no need to make flash
updates and no need to bother with a lot of the interrupt handling problems.

2Statistically, the most frequent made mistakes in dealing with dynamically allocated
memory are : writing out-of-bounds, writing to freed memory, writing via a stale pointer
and freeing memory twice or not at all [6].

99

RTEMS copies the interrupt table of the firmware as one of the first things
of its initialization and restores it again upon its exit. That way no exception
should point to code no longer callable. By keeping the firmware alive dur-
ing execution of RTEMS operating system, we also got the ability to source-
level debug RTEMS for free. The firmware supports the GDB debugger in its
remote-debugging mode. So, by being able to single-step through the process
of the system initialization, most of the bugs were located and fixed quickly,
without the need to use drastic debugging methods. Another benefit that
came with keeping the firmware active was that the firmware has an interface
for launching programs on the ACE. By keeping that, the tools which came
with the ACE card were still usable to launch RTEMS applications. They only
required minor changes for the memory based I/O and some RTEMS/ACE spe-
cific features.

5.5 Porting Problems

Porting an operating system is a complex task, and some problems which
came up should be discussed here.

� Outdated Tool-chain
The installed tool-chain that was provided on the system used for port-
ing (make/grep/ . . .) was too old to handle the configuration process.
Because of unclear error messages which pointed to the source tree of
RTEMS, finding the problem took some time. After adding a new ”bin”
directory containing newer versions of all those tools to the search path
it was possible to rebuild an already existing implementation of RTEMS
in a matter of minutes. If RTEMS fails to build out-of-the-box in a mat-
ter of minutes for an already defined system, a check of the tool-chain
versions is advised.

� Endianness issues
After the first examples, such as ”hello world” and the paranoia test,
worked on the ACE card no program that used multitasking or timing
functions worked. It appeared that the timer setup was not as straight-
forward as the documentation suggested. The ACE BSP uses the inter-
nal timers of the microSparcIIep CPU for the multitasking timer and
long-interval timer. The first timer is responsible for triggering an in-
terrupt each millisecond to serve the scheduler and timing functions.
Since these are part of the PCI logic of the microSparcIIep PCIC (PCI

100

Controller), they happen to be in little endian while the rest of the CPU
works in big endian.

� Reboots
Since a small hiccup of the communication layer in a badly written Unix
driver can bring the whole host system into a state in which a crash
might be imminent, several reboots of the host were required. Since this
is not easily done with no access to the host, it took a lot of time. The
host driver has been improved since.

� Hardware Bugs
The ACE hardware has some bugs. One of the bugs which showed up
rather early was that the VSP lines are buggy. They need a certain
amount of data transfers until they sync between sender and receiver.
Another bug in the hardware is that the RC local bus (see figure 2.1)
does not support snooping correctly. The microSparcIIep CPU should be
capable of snooping the bus for writes and dropping cache lines if their
contents had been changed. However, this does not work reliably.

101

5.6 Hardwired Defaults

Due to the statically linked nature of RTEMS there are some limits which are
compiled into the system. These limits can be modified to some degree by the
user process at compile time. These limits are:

� Maximum open files

#define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 40

� Maximum units per driver

#define CONFIGURE_MAXIMUM_DEVICES 40

� Maximum number of tasks

#define CONFIGURE_MAXIMUM_TASKS 100

� Maximum number of timers

#define CONFIGURE_MAXIMUM_TIMERS 10

� Maximum number of semaphores

#define CONFIGURE_MAXIMUM_SEMAPHORES 10

� Maximum number of message queues

#define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 10

� Maximum number of partitions

#define CONFIGURE_MAXIMUM_PARTITIONS 10

� Maximum number of regions

#define CONFIGURE_MAXIMUM_REGIONS 10

� Maximum number of ports

#define CONFIGURE_MAXIMUM_PORTS 5

102

� Maximum number of periods

#define CONFIGURE_MAXIMUM_PERIODS 5

� Maximum number of user extensions

#define CONFIGURE_MAXIMUM_USER_EXTENSIONS 5

� Microseconds per tick

#define CONFIGURE_MICROSECONDS_PER_TICK 1000

� Ticks per timeslice

#define CONFIGURE_TICKS_PER_TIMESLICE 20

Changing these values does not make sense in all cases. Defining the ’Mi-
croseconds per tick’ to something other than the supplied value will create
confusion when the timing code inside the BSP is not changed to reflect that
fact. To change these default values a recompile of the rtems client is re-
quired. That module is supplied in source format for that reason. After the
compile, many of these values are ’set in stone’ and cannot be changed without
recompiling.

5.7 Customizing

Some of the default values are also accessible and changeable by user code
using the following interface:

typedef struct {
void *work_space_start;
unsigned32 work_space_size;
unsigned32 maximum_extensions;
unsigned32 microseconds_per_tick;
unsigned32 ticks_per_timeslice;
unsigned32 maximum_devices;
unsigned32 number_of_device_drivers;
rtems_driver_address_table *Device_driver_table;
unsigned32 number_of_initial_extensions;

103

rtems_extensions_table *User_extension_table;
rtems_multiprocessing_table *User_multiprocessing_table;
rtems_api_configuration_table *RTEMS_api_configuration;
posix_api_configuration_table *POSIX_api_configuration;

} rtems_configuration_table;

/* extern symbols */
extern void ___rtems_set_limits(rtems_configuration_table*) ;
extern unsigned long ___config_rtems_memsize ;

The routine rtems set limits , which gets a pointer to the configura-
tion table as its only argument, is called very early in the startup process
of RTEMS/ACE by the routine bsp start() . It can not depend on any other
data structure being initialized, its only purpose is to modify the configuration
table and maybe the value config rtems memsize .

The routine could look like this :

#include <config.h>
#define MB *(1024*1024)
void ___rtems_set_limits(rtems_configuration_table* me)
{

/* For some reason we want some spare at the front
of the memory list */

me->work_space_start += 4 MB ;
}

The structure should be defined in user code by including
rtems-4.0.0/c/src/exec/sapi/headers/config.h , not by cut&paste.
Be sensible with modifications because RTEMS is not protected against abuse
here. Changes to vital information here can make the whole system unusable.

Previous versions of RTEMS/ACE allowed for customizing the amount of
memory which was going to be assigned to the RTEMS memory pool and the
C library memory pool, but the gap in the usable memory map (ref. fig. 5.1)
makes that impossible.

104

Chapter 6

The File Layer

The goal was to easily adapt existing software to the RTEMS/ACE without
major changes. Since most software performs file I/O in one way or another1,
the I/O operations must follow the same semantics as on the host. For this
reason, a file layer device driver was developed and implemented.

The major issues were, that the solution must fit into RTEMS without
major changes to the rest of the OS code, and must be properly integrated
into the code to avoid redundancies. The file layer is part of the RTEMS
device driver table. In that way, it is clearly integrated into the system and
accessible from RTEMS itself for its own purposes, as well as from the user
application.

Usually an RTEMS application either declares a driver table of its own, or
decides to use the default one. RTEMS/ACE declares this one:

/* Define file driver codes */
#define FILE_DRIVER_TABLE_ENTRY \

{ file_initialize, file_open, file_close, \
file_read, file_write, file_control }

rtems_driver_address_table Device_drivers[] = {
CONSOLE_DRIVER_TABLE_ENTRY,
CLOCK_DRIVER_TABLE_ENTRY,
FILE_DRIVER_TABLE_ENTRY,
NULL_DRIVER_TABLE_ENTRY /* end of table marker */

};

1A program doing no I/O at all is by definition rendered useless since it does not produce
any result. It can therefore be ignored in this study

105

If a different driver table needs to be created, be sure to have the correct
ordering: the console driver requires the file driver, but needs to be listed
first! The reason for this is a bit obscure, but important.

6.1 Device Driver Lookup in RTEMS

If a file is being opened on RTEMS, the system traverses the list of device
drivers and looks which one can actually handle the file. The decision is based
on the full name of the file and the name the device driver has been mounted
on.

So, if a device driver would be registered to answer to all names which start
with ”/usr”, a driver that is specialized on names starting with ”/usr/local”
would need to be mounted (= listed in Device-drivers) before that one. Oth-
erwise, the driver ”/usr” will claim to be able to handle the request, and the
specialized driver would never be considered in that case. If the specialized
driver is mounted before the general one all accesses to names starting with
”/usr/local” will be handled by it, while the driver for ”/usr” would be used for
the rest, such as ”/usr/share” for example.

The RTEMS console driver registers itself to the name /dev/console .
The file driver registers itself to the name ””, an empty string. Thus, all re-
quests which are not handled by the drivers which are installed before the file
system driver are handed to it.

6.2 The Actual File Driver

The following sections will discuss the structure of the file layer, the actual
data transfer protocol and the implementation.

Figure 6.1 shows which parts of the software and hardware are involved in
the file layer. The box on the left in figure 6.1 is the ACE side while the right
side contains the host part of the transfer mechanism. As can be seen, the
user application on RTEMS/ACE has to use the RTEMS API or the POSIX
API to talk to the I/O client on the RTEMS/ACE side of the system. This I/O
client makes its service requests by using the VSP lines to the server system.
These transfers are routed through the various bus systems which connect
the ACE and the server. On the server side, the requests are handled by a
modified TSI device driver which connects to the host’s file system.

106

virtual
serial ports

mapped
memory

virtual
serial ports

User Application

PCIPCI i960
PLX PLX

RTEMS
API

POSIX
API ACE2

APIKernel

I/O Client

Host Filesystem

I/O Server

TSI Drivers

Figure 6.1: Route of data during I/O

6.3 The Structure of the File Layer

The file layer consists of two parts, which communicate to provide the same
functionally as a native file system would provide to the RTEMS/ACE sys-
tem. The client is located on the RTEMS/ACE side and translates RTEMS
file system calls to requests to the server and accepts the handshakes from
there.

On the server the requests made by the client are translated and handled
by a Finite State Machine (FSM). The server performs the action requested
by the client and answers the client with a handshake confirming that the
operation requested is completed.

6.4 The Protocol

The protocol used to transfer data between the host and the server only knows
one direction of command flow, from the RTEMS/ACE to the server software.
Data transfer is then performed by reading and writing the memory on the
ACE card .

The cornerstone of the protocol is a structure named handle client ,
which contains all operational data for one file-handle.

struct handle_client {
union ace_code ace_code ; /* Parameters */
long int result ; /* result from last action */
enum command comm ; /* What is to be done ? */

107

char allocated ; /* 0, free. != 0, allocated */
} ;

The entry ”ace code ” is a union that has a different contents depending on
the kind of service the client wants the server to perform. To distinguish
the service types, the ”comm” entry exists, which holds one of the following
command codes. These are :

enum command {
com_none = 0,
com_open,
com_close,
com_read,
com_write,
com_ioctl,
com_done

};

Please note that there is no explicit entry for a seek operation. The seek
operations are handled by RTEMS internally and are not visible to the file
layer. Each read() or write() operation is accompanied by the correct offset
from the beginning of the file. Thus, no separate seek operation needs to be
performed because RTEMS changes the current file position in its own file
description object instead. The only data which needs to be transfered to the
server is now the index into the global array of ”struct handle client ”.
This array is located in the ACE memory space at a fixed address at 512K
(see Figure 5.1, ’Communication Area’).

Actual I/O is initiated by the client setting up a communication structure
for a file and telling the server to perform the desired action on that node.
The file handle number is transfered by a VSP line and is only one byte in
size. The server then accesses the structure in the mapped ACE memory
(using his device file) and gets all information needed to handle the request.
The transfer of data to be written to a file or read from a file involves further
memory transfers with the payload data. After updating the structure with
a new command entry (com done) in the ACE memory, the client considers
its requests as being served and continues execution. For stability reasons
all operations are handled synchronously. Some operations could have been
implemented using asynchronous actions on the server side, but that was
not done because of the possibility of race conditions and because the speed
increase would not have been worth the increased complexity.

108

Following is a description on how the protocol works in respect to the com-
mand flow and data flow. After that, an example for a typical action is ex-
plained in detail.

6.4.1 Command Flow

Commands are passed from the client to the server by using a VSP line. The
client only transfers the number of the file’s handle client struct which is
an offset into the global array (see Figure 5.1) of these structs.

On the server side the command is read from the /dev/ace0ttyb device
file which the server opens on his start up. When a command is read, the
value is treated as offset into the array. The handle client struct which
is addressed by that command is copied out from the clients memory to the
host and inspected for what action has to be performed. The offsets 0,1,2 are
treated specially because they correspond to the stdin , stdout and stderr
file handles of the server. That way, the host console the server is started in is
connected to the RTEMS/ACE console. However, some command values sent
by the client do not map to file handles, they serve an administrative purpose.
These values are:

� 120
If the value 120 is sent as a command to the server, this means that
RTEMS/ACE has reached the exit code and that it wishes to terminate.
The server then resets the card , frees its resources, and exits.

� 122
This is a special link-up value that is written by RTEMS/ACE on
startup. A block of several bytes with this value is written so the VSP
can synchronize. This is necessary because of a VSP driver problem that
can lead to data loss of the first few bytes transfered (see section 5.5).
To avoid that commands are dropped due to this initial unreliability, the
value 122 is sent by the client (ACE) and ignored by the server.

� 0. . . 99 These are valid file handle numbers. If a command is read, its
correct handle client I/O block is transfered from the ACE memory to
the host side and the operation specified in that block is executed.

109

6.4.2 Data Flow

Transfer of all data is done in the memory of the ACE card. The memory
space of the ACE card is accessible on the host by a device file. By reading and
writing this file, the memory contents on the corresponding memory location
on the ACE card is read from or written to. The server implements an ab-
straction layer above this mechanism. It has two functions called ”copy in ”
and ”copy out ”, which handle all address translation required. They are
used to read communication structs from the ACE memory to a local copy in
the server and to re-transfer them back to the ACE memory. Between these
two actions, additional transfers of payload data between the two bus sys-
tems occur. By providing this additional abstraction layer, the server is easily
adapted to different ways of memory access.

6.4.3 The Host Side

The host side implementation of the protocol can be found in the
server/server.c file. The server side is implemented as a Finite State Ma-
chine (FSM) with one central state where different input switches the state to
the different service states. There is only one thread of execution. After the re-
quests have been handled, the flow of control returns to the central state and
waits for the next action to be performed. The routines for accessing the ACE
memory are also found here along with the setup code for the RTEMS/ACE
command line.

The server attaches a timeout to /dev/ace0ttyb , the line file descrip-
tor that connects to the ACE card in use. This is important because the
server would stay in the kernel read code waiting for incoming data even
if the RTEMS/ACE application had crashed. To avoid this, the file descriptor
has to be set to timeout after a short period of time so the read call returns
with a read length of zero. When that happens, the server is in the user mode
again and can be terminated interactively by ’control-c’. This is part of the
server source code, which sets the file handle modes using ioctl . The code
is stripped down a bit by removing the parts which are not vital for proper
functionality.

unsigned char get_command()
{

unsigned char x, c ;
int tb, s, i;

110

struct termios tios;
static int sleep_val=0;

do {
/* Set a timeout of 1 sec */
s = ioctl(fd, TCGETS, &tios);
tios.c_cc[VMIN] = 0;
tios.c_cc[VTIME] = 01;
s = ioctl(fd, TCSETS, &tios);

/* Do the read and check result */
if (read(fd, &x, 1)==1) {

/* Got something */
return x ;

}
/* ... timed out */

} while (1);
}

6.4.4 The RTEMS/ACE Side

The RTEMS/ACE side of the protocol is implemented in the file
server/rtems client/rtems client.c . Since this is also the default
startup code for RTEMS/ACE applications, additional operations are imple-
mented here. Most noticeable is the file layer, which is implemented mostly
in this file.

The protocol driver opens the VSP line to the server and sets up the argc
and argv command line parameters for the main() function in user- supplied
code. The initialization function of the protocol first establishes contact with
the server by initializing the VSP line which is used for command transfer.
After successfully initializing that line, the client starts writing a block of the
commands with the value 122 , which is to be ignored by the server if it is
actually received by the host. This is done to sync the VSP lines.

After that the command line arguments, which were left at a fixed address
by the server, are copied over to a dynamically allocated memory block be-
cause that address range is then used for the array of struct handle client .
The entries are all cleared and the first three are preallocated because they
are hardwired to the stdin ,stdout and stderr file handles of the server.

111

6.5 The Actual Implementation

The actual implementation of the protocol mentioned above is done in ’C’, as
is the rest of RTEMS/ACE and the download tool by TSI. This section will
describe implementation details and what is where.

6.5.1 Parts of the File Driver

The complete RTEMS/ACE file driver system consists of the following parts:

� newlibif
This stands for newlib interface. It is part of RTEMS. This file contains
code that replaces Unix semantics with RTEMS semantics and calls the
RTEMS driver code for the functions. It translates modes for opening
files from the Unix semantics to the RTEMS key values and keeps track
of file descriptors. The newlib [8] itself is a small C library that is de-
signed for embedded systems and which provides basic features such as
malloc() and fopen() . A normal libc from a Unix system would be
much to big to fit in the limited resources of an embedded system.

� File Driver
The file driver is a new part and is configured into the BSP that is the
base platform for user programs. It registers itself as a RTEMS device
driver and answers all calls which have not been acted upon yet by other
drivers. The drivers are organized as a chain, and a driver answers to a
name if it can. The file driver is the last one, and thus it is allowed to
answer to all names coming in. RTEMS special names for device drivers,
like ”/dev/console” are resolved before the file layer is asked, and thus
not passed to the file layer for service requests. Since RTEMS does not
provide a directory structure here, reading e.g., the hosts ”/dev/cdrom” is
possible and will be resolved to the file I/O layer.

� Host Driver
The host driver replaces the ace2download tool and starts the pro-
grams on the microSparcIIep . After transferring the binary image into
the ACE memory, the command line arguments for the program are also
copied over to the ACE memory space so the RTEMS/ACE application
will find them. Not all options are copied over to the RTEMS/ACE side
because some options can be for the server. Please refer to Appendix B
for details. After that setup is complete the ACE firmware is told to start
execution of the code.

112

� Communication Area
At a fixed address (524288, or 512K) of the memory on the ACE card
some memory serves as an array of communication channels. Each
channel is a structure which contains the parameters of a call and a
handshake tag. The channels are allocated by the open() call on the
RTEMS side and stay connected with the file they are assigned to.
They contain the information which is normally passed to the open() ,
close() , read() , write() , seek() ,. . . calls plus special status infor-
mation about the action to be performed by the host. The handshake
word is used to signal RTEMS the host is done with I/O. For more de-
tails about the data structures please refer to section 6.4

6.5.2 Example call chain

As an example, here is a list of steps which is executed for an open() call by
the user program until it returns:

� rtems-4.0.0/c/src/lib/libc/newlibif.c | open()
The newlibif provides the entry point for open() . The call is simply
forwarded to rtems open() which is part of rtems-4.0.0/c/src/
lib/libc/libio.c .

� rtems-4.0.0/c/src/lib/libc/libio.c | rtems open()
rtems open() translates the mode flags for the call to the RTEMS

I/O manager from the Unix style to the one used internally by RTEMS.
It also allocates an RTEMS file descriptor object out of a fixed storage
array of descriptor objects. Object allocation is done under semaphore
protection. According to the name of the object to be opened, the driver
list is searched for the appropriate driver. That reference is remem-
bered in the I/O object for faster dispatching of I/O. The new object is
then initialized with the values for the RTEMS I/O subsystem (name,
permission bits, access bits, . . .) and passed to it via rtems io open()
in ./c/src/exec/sapi/src/io.c .

� rtems-4.0.0/c/src/exec/sapi/src/io.c | rtems io open()
rtems io open() calls the drivers open() via a function pointer. The
pointer can be obtained by referencing the driver information which is
part of the I/O object. That pointer is set during initialization of the
device driver and originates in the BSP package.

113

� BSP | open()
This is the new driver. Its open() call allocates a new I/O channel struc-
ture from the global array and places the channel’s index number inside
a private extension slot which is part of the RTEMS I/O object. The chan-
nel structure is then set up with the command values (see 6.4 for them)
for the Unix open() function. Finally the number of the communication
channel is sent to the host via VSP.

The RTEMS I/O control flags need to be translated to Unix flags here,
the inverse of the translation already performed before. The translation
that happens here, from Unix to RTEMS and back, must not be ommited
because the open() does not neccesarily target the file I/O layer. It must
translate the flags the user application passes in to the RTEMS flags.
The file I/O layer now knows it is going to talk to a Unix machine, and
so it needs to translate the RTEMS flags it receives back to legal UNIX
flags.

After the command is sent to the host, the client is waiting for the host
handshake. This handshake is performed by updating the I/O channel
structure in the ACE memory by the host. The host places a new value
(com done) in the command entry (struct handle client) of the I/O chan-
nel struct, notifying the client that the I/O has been completed. Due to
the polling mechanism used, that memory area has to be non-cacheable.
The currently used method is to disable the data caches right before the
loop and re-enable them again after successful completion of the hand-
shake.

Since manipulating the cache status requires dealing with hardware re-
sources of un-shareable nature, that part is protected by a semaphore.
Otherwise, a race-condition might occur with one task finishing I/O and
re-enabling the caches. That would prevent an other task from receiving
his reply because its ’struct handle client’ would be cached.

� returning
After the handshake and the re-enabling of the data caches, the call-
chain is walked back. The link between the file and the communication
structure is saved in the RTEMS file handler object. It remains valid for
the whole lifetime of that file handle. For more details about the data
structures please refer to Section 6.4

114

6.6 The Host Side

The Host side of the file layer consists of a slightly modified version of the
download tool which was provided in source form by TSI-Telsys. Here, the
host part is called server because, after startup of the application, it does
nothing but answer requests from the ACE card . The binary representation
of the RTEMS/ACE program and the server are combined by a Unix feature
originally used for scripts.

Scripts are files of unknown architecture, that means the kernel does not
know how to start them directly, but they are marked executable. Now the
first line of the file is examined if it holds a valid path to an interpreter binary.
Usually, that would be /bin/sh , but in our case, it is the path to the server
binary rtemsserver . The server binary then gets started with the binary
as an argument, plus any command line arguments given on the command
line. It loads the binary, skips the leading interpreter path line, if present,
and uploads the rest onto the ACE card.

After the application has been started and the contact has been estab-
lished, the RTEMS/ACE side acts as a client. It uses the VSPs to transfer the
commands to the server side. The server side waits for incoming commands
and processes them one at a time.

Serialization is guaranteed by a semaphore in the RTEMS/ACE file layer
which ensures that only one file I/O operation at a time can be issued and
completed. This semaphore is allocated before an I/O command is sent to the
server. The CPU caches are flushed to main memory to enforce data consis-
tency. After the server has completed the requested transfer, and written to
ACE memory, the CPU caches are flushed again to ensure that CPU cache is
consistent with the main memory of the ACE card . Finally, the semaphore is
released again.

The setup of the ’struct handle client’ , however, is not protected by
this mechanism. In order to minimize the latency of the file operations, the
single-threaded part is kept as small as possible. Avoiding races in the file
layer would only make the possibility of races smaller, but not eliminate them.
The RTEMS I/O code was not designed to ensure that multiple threads can
write to the same file handle. Code doing that is bound to fail on RTEMS/ACE
sooner or later, and by making the window for the fail larger increases the pos-
sibility to find such bugs early in the testing period. Syncronisation of mul-
tiple threads doing I/O to the same file requires protection on the application
level.

115

6.7 Console I/O

Console I/O for RTEMS/ACE was initially implemented solely using the VSP
mechanism. After the file layer was completed, there was no reason why the
console should not use the same way to transfer the data to the server console.
After all, the file layer provides higher bandwidth than the VSP lines.

For this purpose the new console driver creates three files which are im-
plicitly. They are connected to stdin , stdout and stderr on the server side.
Because the new console uses the file layer, debugging output via printf()
is not possible before the file handler is initialized. Should a new driver be
implemented that needs to be initialized before the file layer, debugging out-
put should use the vsp puts(const char*) call which writes to the boot
console. The boot console is connected to the /dev/ace0ttya VSP device file
on the host side.

116

Chapter 7

Conclusion

The port of RTEMS to the ACE hardware was done to simplify software de-
velopment for adaptive computing. RTEMS/ACE has been in use for some
time in different places and is, so far, doing well. It has proven to be a reliable
and efficient programming vehicle which frees the programmer from a lot of
burdens and lets him focus on the main problem. This work took longer than
planned due to the different time zones in which all parties are located. In
addition, the requirements and specifications changed as research continued.
Also, no program beyond a certain size is ever ready, there is always room for
improvements.

The central points of the project were the porting of RTEMS to the ACE
hardware and creating a file system emulation layer inside RTEMS. Both
goals have been achieved. Porting RTEMS to the ACE hardware was easy.
After all, the RTEMS kernel is designed to be portable. Actual porting guide-
lines were rare, so most of the porting process had to be figured out by code
review. First versions of the RTEMS/ACE kernel booted soon after the porting
began. Adding the file layer introduced also the need to guard against stale
data in CPU caches due to multiple DMA busmasters.

To conclude, RTEMS/ACE has reached production quality level of reliabil-
ity and can be used in daily research and production work.

117

A

Troubleshooting

This section will discuss how to determinate the cause(s) of abnormal behav-
ior. One can read the boot messages of the RTEMS kernel by attaching a
terminal program such as tip to the VSP[0] channel. An example command
for Solaris 2.7 on the host accessing an ACE card could be

tip /dev/aceII0ttya

on the host workstation (under Solaris 7.7/sparc) used for the initial port and
an ACE2 card . The ACE card (not ACE2) has a different naming of the device
files. For the ACE card the command would be:

tip /dev/ace0ttya

Notice that the ACE cards lacks the II part of the name. The number digit is
to distinguish different cards of the same type in a single host computer.

In some situations RTEMS/ACE will fail to perform as expected. What
follows is a list of possible failures and their explanation along with hints on
how to solve them.

� No memory size test messages appear, nothing happens at all
The VSPs used for data transfers need some I/O to come in sync. For
this purpose, RTEMS/ACE sends a set of ignore-me commands to the
server by the command VSP first. If the VSPs do not sync, then no I/O is
possible. This might be cured by lowering the load on the host, choosing
different hardware for the host or by a fixed version of the VSP driver
code in the host kernel.

118

� Program dies during memory size test
That means one cannot read the reported memory size. Something is
wrong with the installed memory. RTEMS/ACE does its own memory
size calculation based on mirror detection1. If the memory address en-
gine on the board is producing results differently from the ones planned
for, then this might happen. It will also happen if there is not enough
memory available to hold the initial image. Also, RTEMS/ACE expects
at least 12 Megabytes of main memory to be present. The memory size
test should tell the size of detected memory. If it differs from the actually
installed size, the memory may be faulty.

� Insufficient memory installed
If RTEMS/ACE finds the memory insufficient, it did not find enough free
memory to hold the RTEMS memory pools and the libc memory area,
RTEMS/ACE halts execution after displaying this error. This means the
program declares a lot of static storage which might better be dynami-
cally allocated. Another reason might be that RTEMS itself allocates a
big address range for its own memory area. One may find the RTEMS
configuration routine (see section 5.7) useful here.

� Server does not obey ’ctrl-c’
The virtual serial port driver is buggy. The ACE server sets the file
descriptors for the VSPs it allocates to a timeout read mode2. If that
fails, the server waits inside the kernel read function for incoming data
and is not interruptible. Because it still has a lock on several resources,
it is not possible to reset that ACE card . Reboot the machine and update
the VSP driver to one that supports timeouts.

� lock is set
The server maintains a lock-file to make sure that only a single server
accesses the same ACE card . If a RTEMS/ACE application or the server
prints out ”Error : lock is set . . . ”, then the lock-file exists. This may
be due to an already running application on that card , or it may be a
leftover from the last server running that card . If a server gets killed by
hand, it cannot remove the lock-file again. This is extremely annoying if
that lock-file is owned by some other user and one cannot delete it even

1That means that the end of the physical memory is detected by observing the side effects
a write outside the physical memory has. This write can be redirected to location NULL
(mirroring the address range) or simply not work at all.

2This is done using VMIN and VTIME in an ioctl() The include file is <tty.h> or
<termios.h> , depending on the Unix version in use.

119

if it is stale. The use of lock-files can be turned off by using the -l switch
to the server.

A.1 Compatibility

The host driver silently assumes that the data types on both, the microSparcI-
Iep and the host system, have the same representation and alignment restric-
tions. For the current version, which uses SPARC on host and client sides, this
does not matter. A port to some little-endian hardware (e.g. Linux on Intel’s)
will need some attention in that area.

120

B

Usage

rtemsserver(1)
NAME

rtemsserver

SYNOPSIS
rtemsserver [flags] [file]

DESCRIPTION
The rtemsserver program is the host resident part of the RTEMS/ACE
system. It is responsible for controlling the ACE card and executing
the I/O transfers the RTEMS/ACE application requests. The server is
derived from the original ACE tool aceiidownload which is supplied
with the card .

The RTEMS/ACE server understands the following command line
options:

-c <card>
Sets the card number the server should use to run the RTEMS/ACE
application. Since more than one card may be present in a system
they are enumerated and differ in the number which is also a part
of the name of their device driver interface file.

-d
Enable debugging of the RTEMS/ACE application. The application
is not launched but stopped at the first machine instruction. By
using the GDB debugger, a capture of the application is possible.

121

-l
By issuing this switch the rtemsserver does not use lock files to
make sure it does not try to use a card which is already in use by
another rtemsserver.

-e <address>
Specifies the core address of the first instruction. The binary
RTEMS/ACE application will be loaded to this address. No checks
are done whether it is relocated for that address or not. Since the
default relocation address is one megabyte, the default for the -e
option is the same.

-v
Be verbose. The server is printing additional information to the
console about what it is going to do. This option is off by default
since it could be confusing to have the server console output mixed
with the output of the RTEMS/ACE application.

-P <path>
Set the current directory to <path> after loading the RTEMS/ACE
application binary. This improves usability in case of scripting the
server separately from the binary.

-X <prefix>
Set the prefix of the /dev/ files to <prefix>, so an old ACE1 card can
coexist with newer ones. The ACE1 had /dev/ace. . . entries while the
ACE2 has /dev/aceII. . . This string defaults to ”aceII”.

-i
This means ”ignore” and tells the server to quit parsing the fol-
lowing options. Options given after this flag are passed to the
RTEMS/ACE application. So, if the application needs to get an
option which is also understood by the server, it can be placed
after this ignore option and is then correctly transfered to the
RTEMS/ACE.

If the binary starts with a line that specifies an interpreter binary
to the shell, all the options set on the command line are transfered
to the application. The option -i can be argued to be obsolete in
most cases, but it can be useful nevertheless.

122

In addition to the command line flags the server understands a set
of environment variables. These are evaluated before the command
line is parsed, so their values can change the default settings but can
still be overwritten by settings specified on the command line. The
environment variables are :

ACE2CARDNUM
The card number the server tries to open defaults to 0. This de-
fault value can be changed by setting this variable to a different
value. The previous default card is then not tried. The value can be
overwritten on the command line.

ACE2PREFIX
The prefix under which the device driver files are searched defaults
to ”aceII ”. In case only ACE1 cards are installed the default can be
set to ”ace ” with this environment variable. Again, the command
line can overwrite the value assigned to the default setting.

Example

sieve.run

This will run the application ’sieve’ without any arguments to either the
server or the application.

sieve.run -c3 -Xace

The application will get the arguments -c3 -Xace, not the server !

rtemsserver -d cat.run logfile -v

This will start the application ”cat ” with the parameter ”logfile ”, the
options -d will go to the server, -v will not. The server will load the
application and place a breakpoint at the first instruction there, -v will
be an argument to the application.

123

B.1 RTEMS/ACE

Now, how can RTEMS/ACE be put to use ? The normal way is to first create
a cross compiler (gcc) for the microSparcIIep CPU. All the binutils and newlib
are needed also. With these tools installed, the application can be compiled to
object code. On the development system, a makefile might look like this:

sample RTEMS/ACE2 makefile
AHK991207

the target program

PROG=hello

path to the RTEMS installation directory
(containing bin, sparc-rtems etc.)

RTEMSBIN=$(RTEMSACE)/bin

the RTEMS/ACE2 IO server

SERVER=$(RTEMSBIN)/rtemsserver

the compile-flow tools

CC=$(RTEMSBIN)/sparc-rtems-gcc
LD=$(RTEMSBIN)/sparc-rtems-gcc
COPY=$(RTEMSBIN)/sparc-rtems-objcopy
CCOPTS= -g -fasm -specs bsp_specs -qrtems -O3
LDOPTS= -g -fasm -specs bsp_specs -qrtems -O3
COPYOPTS=-O binary

make rules

default: all

$(PROG).exe: $(PROG).o
$(LD) -o $(PROG).exe $(PROG).o $(LDOPTS) -lm

.c.o:
$(CC) -c $(CCOPTS) $<

124

$(PROG).bin: $(PROG).exe
$(COPY) $(COPYOPTS) $(PROG).exe $(PROG).bin

all: $(PROG).bin
echo "#!$(SERVER)"|cat - $(PROG).bin\

> $(PROG).run
chmod a+x $(PROG).run
@echo "OK, RTEMS/ACE binary for $(PROG) built.\

Run it using \n\t./$(PROG).run"
clean:

rm $(PROG).exe $(PROG).bin $(PROG).run $(PROG).o

This Makefile is used to create a simple ”hello world” program to test the
RTEMS part of RTEMS/ACE. During the build process some files are created
with unusual suffixes. The initial compile creates a file that ends in ’.exe’ .
This is a normal executable binary file, it contains symbols and is needed for
debugging purpose. The ’.exe’ file is then transformed into a raw binary
which ends in ’.bin’ . That raw binary contains only a raw dump of the
code and data segments the ’.exe’ file held. All additional information is
stripped. This file is the memory image for the ACE card .

After being loaded to the originate address of 1M, it can be started. To
make the process of starting it simpler and intuitive, the ’.bin’ file is related
with the rtemsserver program using the UNIX interpreter mechanism so it
can be started by just typing its name in a shell window. The resulting file
therefore ends in ’.run’ .

B.2 Debugging RTEMS/ACE

As mentioned earlier, one positive aspect in keeping the ACE firmware alive
is the bonus of the GDB debugging hook. To use it, 2 terminals are needed.
They can be 2 console screens or 2 xterm windows. If one also wants to see
the boot output, a third console / xterm is needed for that.

For example, lets assume you want to debug a program named
’’foo.run’’ . Start your program. Because you need to give an extra op-
tion to the server, the binary cannot be started alone. You need the explicit
invocation form.

rtemsserver -d foo.bin

125

In case foo.bin needs parameters and options, place them behind the name
of the binary file, like in

rtemsserver -d foo.bin -optsToFoo ArgsToFoo

Change to the second console and start the debugger. The application is
already loaded now and waits for the debugger to connect.

./projects/test> gdb
(gdb) sym foo.exe
(gdb) target remote /dev/aceII0debug
(gdb) break main
(gdb) c

The first command to GDB forces it to load the symbols from another file.
Since the debugger has no knowledge what it is going to debug, it cannot know
where to find the symbols. During the build process of foo.bin the standard
executable binary file foo.exe was created. This file contains the symbols
we are interested in. The line

(gdb) sym foo.exe

makes the debugger read the symbols from that file. Now we can work with
names rather than numeric addresses. The next logical step is to connect the
debugger with the remote debugger hook in the ACE firmware. The line

(gdb) target remote /dev/aceII0debug

does that, assuming the binary was started on an ACE2 card with number
zero. Next, it should be a good idea to place a breakpoint so the program
stops at an interesting point once we let it run. The GDB command

(gdb) break main

will place a breakpoint on the main() function. Since the program is already
started, we do not need to start it with a run command. The rtemsserver
placed a breakpoint on the very first instruction, so we simply need to continue
the execution. The short form of the continue command in GDB is the simple
’’c’’ . So the use of this line

(gdb) c

126

will continue the program and stop it at the main function where a breakpoint
had been placed. Please be advised to never let the debugger run free, because
it will not recognize the termination of the program by itself. The resulting
hang of the debugger can be removed by giving it a KILL signal and after that
flooding its connection channel (VSP 1) with arbitarydata. The ACE binary
smack.bin does that. Writing that one from scratch is easy.

While being able to source debug RTEMS/ACE is a good thing, there are
limitations to the usability of the debugger. It is not always possible to de-
bug an application in detail. The problem here is that GDB thinks of the
RTEMS/ACE as one application, but this application does evil tricks which
GDB cannot understand. One example is: Place a breakpoint on your main()
function and after arriving there, call for a stack back trace. GDB will tell
you that main is the outermost layer and no back trace exists. RTEMS imple-
ments a powerful multitasking, and with that comes the need for exchanging
stack pointers. So, if a breakpoint is hit, that can be any task of RTEMS, and
GDB might be a bit confused by the stack layout implemented by RTEMS and
by the absence of a thread model it understands.

B.3 High Resolution Timers

To aid the process of benchmarking, RTEMS/ACE supports a fine granularity
clock function which has a resolution of 1/4 of the CPU clock frequency. In case
of the currently available ACE and ACE2 cards that means 25MHz timing
frequency or 40 nanoseconds per clock tick. The file I/O driver knows about
this clock and uses it to keep track of the delay time it spends waiting for the
server to answer the requests. This idle time then can be subtracted from the
runtime to get the time the CPU was actually doing work. For details, please
refer to the example source code in section B.3.1 and B.3.2.

One issue is that the time spent inside the RTEMS scheduler is not taken
into account. Other interrupt times are included, however. This is important
because the SPARC architecture has window- underflow and -overflow traps.
Following are the manual pages for the benchmarking support code.

127

B.3.1 RTEMSIO getSystemTicks

NAME
RTEMSIOgetSystemTicks

SYNOPSIS
long long RTEMSIO getSystemTicks(void);

DESCRIPTION
RTEMSIOgetSystemTicks() returns the number of 25 MHz clock ticks
since the initialization of the scheduler clock. The time spent inside the
scheduler is not accounted for.

EXAMPLE

#include <stdio.h>

extern long long RTEMSIO_getSystemTicks() ;

/* assume sieve being used to eat up some time */
extern int primes(int max);
int main(int ac, char** av)
{

long long start, end, overhead ;
int p ;
overhead = RTEMSIO_getSystemTicks();
start = RTEMSIO_getSystemTicks();
p = primes(8192);
end = RTEMSIO_getSystemTicks();
printf(‘‘found %d primes\n’’, p);
printf(‘‘time : %L\n’’, end-start-(start-overhead));

}

BUGS
The internal code uses an unsigned long integer to count the scheduler
timeslices since scheduler initialization. This counter will overflow after
2
32 milliseconds. That is more than 1193 hours. Please note that the

return type of ’long long’ is not a typo. The result is based on the number
of timeslices (uint32) times ticks per timeslice. To prevent overflows, the
calculation is done in the next higher ranged datatype.

128

B.3.2 RTEMSIO getIdleTicks

NAME
RTEMSIOgetIdleTicks

SYNOPSIS
long long RTEMSIO getIdleTicks(void);

DESCRIPTION
The function RTEMSIOgetIdleTicks returns the number of ticks
which were spent in the file I/O code waiting for the server to handle a
request. Normally, the time spent in the I/O code waiting for the server
is counted by the benchmarking ticker in the total time statistics. To
be able to estaminate how much time a program actually needed to ful-
fill its job, this idle time (similar to ”system time” on Unix) needs to be
subtracted.

EXAMPLE

#include <stdio.h>

extern long long RTEMSIO_getIdleTicks() ;

int main(int ac, char** av)
{

long long start, end, overhead ;
FILE* in, *out ;
int i,len ;
char buff[1024] ;
in = fopen(‘‘input’’,’’r’’);
out = fopen(‘‘output’’,’’w’’);
if (in && out) {

overhead = RTEMSIO_getIdleTicks();
start = RTEMSIO_getIdleTicks();
do {

len = fread(buff, sizeof(buff[0]),
sizeof(buff)/sizeof(buff[0]), in);

fwrite(buff, sizeof(buff[0]), len, out);
} while (len == sizeof(buff)/sizeof(buff[0]));
end = RTEMSIO_getIdleTicks();
printf(‘‘Copy idle time : %L\n’’,

end-start-(start-overhead));

129

fclose(in);
fclose(out);

}
}

BUGS
The file I/O code which calculates this values is using
RTEMSIOgetSystemTicks() to do the measurements, so if the
wraparound of the timeslice counter falls in the time an I/O operation is
currently waited on, the idle time will be corrupted.

130

C

Glossary

� Adaptive computation
In the research field of adaptive computation the aim is to blur the
boundary between software and hardware. A program no longer consists
only of a set of processor instructions, but also a set of problem-specific
hardware which is loaded into the hybrid computer as well. A special
compiler can optimize the program by identifying parts of the code which
can be executed in hardware. These parts then get translated into a de-
scription that can be loaded into the FPGA part. Speedups in an order
of magnitudes have been observed up to now. The compiler technology
for this field is currently a research field, too.

� BSP
Board Support Package.
A set of support routines which enables RTEMS to talk to a specific plat-
form. RTEMS only uses the well-defined interface to the BSP. The task
of the BSP is to supply the hardware drivers required for the functions
defined in the interface.

� Endian
Different CPU types use different ways to store information in main
memory. There are almost as many ways used to order the bytes of a
multibyte value in memory as there are theoretical possibilities. The
most widely used ways are little and big endian. Under big endian,
the most significant byte is placed at the lowest memory address of the
multibyte value while under little endian the most significant value is
written to the highest address. So, for example the value 0x11223344
would look like 0x11,0x22,0x33,0x44 on a big endian system when read
as a byte sequence starting at the address of the multibyte value. On a

131

little endian system the sequence would be 0x44,0x33,0x22,0x11 1. The
little endian order is used in x86 and compatible CPUs while the big en-
dian is used in the Motorola series, the PPC, Sparc and MIPS. Each side
has its advantages and disadvantages.

� FPGA
Field Programmable Gate Array.
This is a gate array which can be reprogrammed without bulky equip-
ment like the fuse burners used to program normal PLAs (Program-
mable Logic Array). The connections between the gates are done by a
software modifiable switch matrix which is loaded into the FPGA from
a dedicated SRAM. This allows, for example, hardware updates by disk
and also allows for custom hardware which is tailored to the currently
running application.

� HAL
Hardware Abstraction Layer.
Typically, a HAL provides equal access to different hardware. The HAL
is one of the lowest layers of an operating system. Since all accesses
to the hardware are done by the HAL, changed hardware onlys need
a change to the HAL and avoids modifications spread over the entire
system.

� RTEMS
RTEMS stands for”Real Time Executive for Multiprocessor Systems”.
This means the operating system does enforce a fast interrupt dispatch
and, if needed, a fast context switch to the task which gets a signal,
provided it is currently waiting for it. RTEMS is portable and scalable,
allowing for use on small system hardware up to multi-processor sys-
tems.

� NFS
Network File System.
Invented by SUN to make the connection of multiple workstations eas-
ier by allowing for shared disk areas. Using NFS, it is possible to find
the own home directory and common file base in place no matter which
workstation is actually being used.

� OAR
On-Line Applications Research Corporation.

1On the PDP, a 32-bit value is stored as 0x33,0x44,0x11,0x22, but a working PDP is hard
to find these days.

132

This corporation is the distributor of RTEMS. They can be contacted
by Internet access to ”www.oarcorp.com”. The download section of their
web-site has all the needed parts to build a complete cross development
system. This is the status as of late 2000. Changes may be expected.
The postal address is :
4910-L Corporate Drive
Huntsville, Alabama 35805 USA

� PCI
Peripherial Component Interconnect.
A commonly used bus system in desktop PC systems and workstations.
The PCI bus has a number of slots in which add on cards can be plugged
to supply hardware features not included on the mainboard.

133

Bibliography

[1] John L. Hennessey / David A. Patterson Computer Architecture : A Quan-
titative Approach
Morgan Kaufmann Publishers,760 Pages, Aug. 1995, ISBN 1558603298

[2] Martin Fowler / Kendall Scott UML Distilled
Second Edition. Addison-Wesley, 185 Pages, 20. Aug. 1999, ISBN
020165783X

[3] Craig Larman Applying UML and Patterns
Prentice Hall, 507 Pages, 1. Mai 1998, ISBN 0137488807

[4] Andrew S. Tanenbaum Moderne Betriebssysteme
2. Auflage. Hanser Verlag, 1995, ISBN 3446184023

[5] Horst Langendörfer / Bettina Schnor Verteilte Systeme
Hanser Verlag, 1994, ISBN 3446174680

[6] Prof. Snelting Software Engeneering
Lecture at TU-BS in WS 1994/1995

[7] GNU binutis : GNU binary utils and libraries
ftp sourceware.cygnus.com
/pub/binutils/releases/binutils-2.9.tar.gz

[8] GNU newlib : GNU linker library for small systems
ftp sourceware.cygnus.com
/pub/newlib/newlib-1.8.2.tar.gz

[9] GNU CC : GNU GCC portable C compiler
ftp sourceware.cygnus.com
/pub/egcs/releases/gcc-2.95.2/gcc-2.95.2.tar.gz

[10] RTEMS Source : RTEMS source codes & documentation
www.oarcorp.com

134

135

Appendix D. Profiling Tools and Result Viewers for the
Nimble Compiler Project

1 Loop procedure Hierarchy graph (LH)

Nimble tries to accelerate compute intensive loops into a configurable co-processor. As such, it
is important to understand where time is being spent in a program. Typically, profiling programs
like Pure Software's Quantify will provide a procedure call hierarchy with time spent in each
procedure or possibly basic block / statement. Vector / Loop compilers for FORTRAN provide a
loop hierarchy such as with SUNWPro's FORTRAN compiler. Nimble provides a unique
procedure call - loop hierarchy graph.

Both procedure call and loop hierarchy are needed to understand effects such as loop distribution
and inlining -- two example transformations that affect the program structure and the respective
contributions to the overall execution time dramatically.

The Loop Procedure Hierarchy graph created by loophier shows procedures as square boxes
and loops as circles. Each static call to a procedure or static invocation of a loop entry is shown
with an arc. Note, that for this reason, there may be many arcs from one graph node to another.

The option -np is often used with loophier to remove system procedure calls (such as
printf()) which tend to clutter the graph with needless information and turn a nice tree into a
DCG/DAG (or rats nest). System calls, if present, are grey shaded boxes.

The option –target <targetname> is used to define the target platform, with acev being
the default.

Note that the loophier report tool is called after an automatic inlining step. The inliner
attempts to make more loops feasible by inlining procedure call hierarchies that do not contain
any loops. One should turn off the automatically enabled smart inliner if one wishes to see the
original program.

loophier can be used with or without profiling information. If profiling has occurred before
loophier is called, the nodes in the graph are annotated with the amount of time the node
contributed to the overall execution time of the application and scaled in size accordingly. This
helps focus the eye directly to the areas of interest. Loops with execution time greater than 1%
of program total exeuction time are shaded in yellow. Note, as with all profiling, results of
relative application time can be very data value or command invocation parameter dependent.
Option -prof is required in order to annotate the graph with profiling information. The default
of loophier is to run it without profiling information.

Eventually, Nimble will focus optimizations by trying to increase the dwell time (or total time
spent per entry) into the fewest number of loops. The goal of the compiler is to make the larger
loops even larger to enable the maximum acceleration in the smallest amount of hardware
kernels. Loop distribution, loop unrolling, loop fusion, and loop flattening are just some of the

136

many optimizations planned as part of a heuristic approach to automatic transformation of the
code.

loophier is based on static compile time analysis. If there are function pointers defined in the
program, it can not infer what is the run time value of these function pointers. We introduce a
“function pointer” node in the loop procedure hierarchy graph to represent all possible function
pointers in the program. Each lexical invocation of a function pointer is shown with an arc going
into the function pointer node.

2 Loop Entry trace Profile (LEP)

Very important information, if one is planning to dynamically reconfigure a shared resource, is
to understand the path or trace through the code during execution; not just how much time was
spent totally in a given loop. For example, lets say there are 4 loops, labeled A through D, that
dominate the calculation and are being considered for a shared co-processor resource. Assume
each consumes 20% of the execution time of the application. It is important to understand
whether one starts in loop A and spends 20% of the time before moving onto B and so on. Or
whether maybe .1% of the time is spent in A, then .1% in B, and so on to D before returning
back to executing in A again. The former is a great candidate for a shared reconfigurable
coprocessor as it only has to be reconfigured at 4 specific times. The latter will probably have
too much overhead of switching contexts between kernels. The loop trace file gives the full trace
of in-order loop entries for the given profiling run. Currently, the loop trace result is a text only
file and not graphically presented.

The option –ild can be used to limit the profiling to only loops with execution time larger than
1% of application total time. The default for lep is to record the entry trace for all loops in an
application.

There are two files that contain the resultant information: The *.loop.info file contains two
part: the first part list the maximum lengths of forward paths in all procedures in the application.
Forward paths do not account for feedback edges in loops. The maximum path lengths are useful
in determining what K-value to use in HALT profiling. If the maximum path is very long,
instead of using the default value of –1, we need to restrict K-value to be a small number, say 32,
to limit the search space during the path profiling performed by HALT. The second part of the
*.loop.info file contains a mapping of actual loop names to a numerically unique loop
identifier. Then the *.lep.trace file contains the generated loop entry trace. Instead of just
printing out the raw trace, which can take millions of bytes in storage, the loop trace profiling
program compresses the trace at run time. The compression drastically reduces the trace size for
most applications—this not only save storage space, but more importantly, the compressed trace
allows fast traversing of the trace at later part of the Nimble Compiler flow. The compressed
trace consists of loop numbers in the sequence they are invoked. The first file line lists the
number of records (lines) that follow. Each record represents a single, compressed stream of
behavior. For example, the template for each record format is:

n, m: x, z, d, … h, b, y

137

where

n is the repetition count for this record (that is, how many times did the following
sequence occur)

m is the number of loops listed following the colon
x, z, d, … h, b, y is an ordered list of loop invocation occurrences.

The whole list is repeated n times to get the full, uncompressed trace.

So, for example, the *.lep.trace file of:
1,10: 115 114 110 112 95 53 1 4 3 2
792,2: 55 54
1,1: 93

means that there was an initial series of 10 loops each executed once, followed by 792
occurrences of loops 55 and 54 being called in succession (note: this means 55 54 55 54 55 54
…. up to 792 times), followed by one loop (#93) being called at the end.

One could imagine finding sequences of repeating sequences though and further compressing the
trace. One level of repeating hierarchy seems to be sufficient to capture most trace behavior in a
reasonable, understandable file though.

Note that this is measuring loop entries, and not loop iterations or time spent in each iteration.
Nested loops (Loop 1 being outer and iterating 32 times; loop 2 being inner iterating N times)
might appear like:

1, 1: 1
16, 1: 2

Note that you cannot tell how many times loop 2 iterated in this case at all. Nor can you really
tell how many times loop 1 may have iterated as loop 2 may be on a conditional (data dependent)
path internal to loop 1.

3 Freq Dump

The Nimble compiler is actually doing a full path profile during the profile run utilizing a
variation of Cliff Young's HALT tool (from Mike Smith at Harvards' HUBE group). The depth
of the paths (number of basic blocks counted forward from any particular basic block) is
parameterizable and defaults to infinite path lengths. A path length of 0 means simply count
basic block executions without regard to where they were entered from or control goes to (path
length of 0). Freq_dump in conjunction with xvcg is the method to view the basic block CFG
and read the annotations of execution frequencies and paths down to this finer granularity. That
is, freq-dump in conjunction with Halt provides a form of basic block tracing. Such a
capability is mainly used for intra-loop optimizations to determine the frequency of potential
exceptional exits, the cost of trimming basic block paths out of a conditional structure, and even
for helping quickly estimate the software performance of the code without doing an accurate,
detailed performance profile run.

freq_dump generates a separate graph for every procedure and contains all the basic blocks for
that procedure. Once executed once, and the basic block numbers are detailed, it can be

138

executed given a starting and stopping basic block number to report on. Not that the starting and
stopping basic blocks must pre and post dominate each other; respectively. That is, when
starting from the starting basic block you must always end up (no matter what path taken) at the
stopping basic block. This is the only valid sub-set of a procedure CFG allowed.

4 Interesting Loop Detector (ILD)

Most of the statistics gathered or calculated are presented in the summary Interesting Loop
Detector text table. General statistics about the whole application are given at the top. This is
followed by a table with one row per interesting loop; sorted by estimated total time spent in that
loop for the application. The format is further explained below.

4.1 ILD Options

§ -h: print out usage information

§ -v: print out detail operator counts for each loop

§ -nosynth: do not include hardware synthesis information in the ILD report. Only print SW
estimates for each loop.

§ -target <targetname>: target platform. The default is acev.

4.2 Header

An example of the header is shown below. It goes the furthest to showing a number of items
about the application overall.

Program totals: #loops 25, total SW-time 463057, operators 625

Loops w/ t_per>10%: #loops 5, total SW-time 66.79%, operators 14.40%

Loops w/ t_per>1% : #loops 12, total SW-time 97.22%, operators 56.32%

Loops w/ HW kernel: #loops 21, total SW-time 92.90%, operators 69.28%

The header has four rows of information, with each row consists of three metrics: number of
loops, SW execution time and operator counts. In the first row, program totals include the
total number of loops in the whole application, the program total SW time and the total operator
counts. A loop is defined as a section of code with a back-edge. Any back-edge, even if formed
by a goto (->) is considered a loop in the code.The Program Total SW Time is the quick
estimated time that the program takes in cycles. This is based on using the path profiling, SUIF
instruction counts per block, and other techniques. If a full, nanosecond clock is available on the
platform of choice, an accurate performance profile of the application and selected important
loops is available also. Operator counts are estimated based on SUIF operators as well.

The second row summarizes how many loops individually represent more than than 10% of the
total application execution time of the program. The number of such loops along with their
sum percentage total of the applications execution time and sum percentage total of the

139

application operator counts are listed in this row. Next, in the third row, the number of loops that
represent greater than 1% each of the total application execution time are listed with their
respective execution percentage and operator count percentage sum totals. Note that the latter
statistics include all loops greater than 10% of the time also.

Embedded applications show the old adage described in Hennessey and Patterson's Computer
Architecture book to the extreme -- that 90% of the execution time is spent in 10% or less of the
code. The loop counts here tend to be less than 5 and 20; respectively, out of an application total
loop count range of 30 to 200 loops. Rarely is the 1% loop count greater than 20 and usually
exceeds the 90% performance mark with a count of 10 or less. Therefore, by just concentrating
on a small number of loops, one can capture a majority of the application execution time. If an
accurate performance profile is done on the major loops identified by this quick estimate step, a
more accurate count can be obtained.

4.3 Loop Summary Table

After the header, the loop summary table is introduced. As the table generally needs to be
printed out in landscape mode due to its wide width, the column headings are transposed to rows
here for explanation purposes. The table below shows the column heading in each row followed
by its explanation.

Note that most numbers in this table are quick estimates used to guide decision making and
heuristics for automating transformations. Accurate performance profiling should be performed
to obtain numbers accurate to within a percentage point or so. Also, the numbers are obtained
before most transformations. So exceptional exit frequency and causes are just guidelines which
may be dramatically changed by different optimizations. Finally, the quick software estimation
does not take into account any cycle time associated with C stdlib calls. Although this can be
significant, it is usually not the case for embedded, integral-number based applications.

name Loop name. An identifier for the loop based on the static
procedure it is contained in and basic block number that starts
the loop. A compiler directive can be given as a C comment to
provide a more usable name if desired.

line Line number in source code file that starts the loop (to further
aid the identification of the loop).

frequency: iter Total number of iterations through loop body. When divided
by the entries, gives a rough number of iterations per entry and
therefore initial key to the dwell time (you need to understand
if this loop was re-entered before entering another loop to
really understand the dwell time).

frequency:
entries

Number of times the loop was entered (should be determinable
from loop entry trace, for example)

140

frequency: hw-en Based on the projected exceptional exits out of blocks in the
control flow of the loop body, the predicted number of re-
entries into the HW co-processor version (likewise, the
predicted number of exceptional exits; assumes one re-enters
the HW on the next iteration after an exit)

time-percent:
total

The total % of the application time taken in this loop (all
blocks, whether feasible or not).

time-percent:
feas

The total % of application time (a smaller number than the
loops total percentage of time in the application) that the loop
was in a HW feasible block. Based on estimates of exceptional
exits, gives a rough lower bound one how much of the total
application time taken by this loop could be accelerated in
hardware.

software-time:
total

The total number of cycles estimated for the software
implementation of the loop. Includes accounting for
"normalized" cache activity.

software-time:
feasible

The total number of cycles estimated for the feasible (basic
blocks that can be implemented in HW) of the loop.

Software-time:
time-1

The estimated average number of cycles for the software
implementation of the loop.

#op Loop operator counts: static number of operators in the body of
the loop.

Op% Percentage of static operator count out of the total static
operator count for the entire application.

memory - ld Number of static memory loads in the loop. This is estimated
based on SUIF instructions, and does not include any memory
loads caused by register spills.

memory - st Number of static memory stores in the loop. Like memory
load, this is estimated based on SUIF instructions, and does not
include any memory stores caused by register spills

hardware: total The total estimated number of cycles spent in a hardware
implementation of the loop (all iterations, etc.)

hardware: Time-1 The estimated time for one iteration of the loop implemented
in hardware. Includes accounting for pipelining (that is, is the
initiation interval if pipelined).

hardware: size The number of datapath operator rows taken by the
configuration to implement the loop. The maximum number
available is platform dependent. The ACE 2 can have a
maximum of 50. The GARP is 32 by design (the simulation
can be reset to any number up to 1024).

141

hardware:
speedup

Based on the columns to the right, the total speedup estimated
obtained by hardware over the software version; including all
(re)configuration times of the hardware. Note, many times this
is blank in the initial compile stages because a trivial
exceptional exit condition is not optimized out yet and thus
makes the loop infeasible. This gives a lower bound on an
expected gain unless there is unusal reconfiguration activity
(very low dwell time).

This is actually calculated as the (Hardware: Time / Software
Time: Feasible)

hardware: qld Number of queue loads if queue is implemented.

hardware: qst Number of queue stores if queue is implemented.

Note that all the hardware related entries are reported only when –nosynth is not specified.

Finally, if an exceptional exit exists, a guess as to the root cause of the exit is made by looking
into the basic block that is determined infeasible. This is reported in a line below the loop row.
An example is:

B: 22 -> 137, f: 8e+05 call

and interpreted as:

an exceptional exit exists in going from basic block 22 to
137. The exception (this path from one basic block to the
other) was taken 8e+05 (80,000) times. The reason for the
exception appears to be a function call that was not
inlined (cast and float are other common occurrences).

Note that more than one exceptional exit path may be listed. Only when the number of times
that path was taken is high (or closely matches the frequency: hw-en) is this of a concern.
The exceptional path may be listed as never having been taken. This is often the case for error
condition checks that then contain printf() or similar system calls as a result of the
exception. This also implies the data set supplied in profiling never tripped the error condition
causing the exception to be taken.

5 METER: Target Platform Performance Measurement

ILD uses estimation-base performance profiling to estimation loop and application performance.
Because it uses a simple SUIF instruction based approach, it does not take into account
instruction and data cache effect, pipeline stalls and the impact of compiler optimizations.
Therefore, it is a fast but crude profiling mechanism, which can be used to aid initial analysis of

142

applications. In order to more accurately measure application and loop performance on actual
target platform, we implemented a package name METER to automatically instrument
application program with various clock probing points to measure program performance at run-
time. The measurement can be done at the application level, or loop level, or in between start and
end points identified by the user. Note that instrumentation points inevitably introduce overhead
cycles. METER estimates the possible overheads and deducts these cycles from the profiling
results.

5.1 METER Flags

Meter is a SUIF pass that instruments application programs with performance measurement
points, The instrumented program can then run on the target platform to obtain performance
results. Meter can be used as a standalone pass, or used as part of the ncc flow. The latter is
recommended because running meter usually requires the meter pass, the actual run and
possibly other passes. ncc has packaged these passes together correctly. The user can pass
various flags to meter to select different running modes and what loops to instrument:

Mode selection flags: only one of the following mode flags can be specified. The default is –sw
is no mode flag is given.

-sw Instrument loops for SW only measurement. This is the default mode.
For SW mode, meter pass should run on .slb files.

-hw Instrument loops for mixed HW and SW measurement. For any loop
selected to be measured, whether to measure its SW or HW
performance depends on the loop’s HW (which kernel) or SW
selection. HW mode requires meter to run after kernel selection
(KS).

Loop selection flags : only one of the following loop selection flags can be specified. The default
is –all.

-feasilbe Instrument loops feasible for HW implementation. These include all
loops that do not contain any operations not implementable in the HW,
such as floating point operations. The feasibility analysis here does not
consider HW size constraint.

-ild Instrument ILD loops (with estimated SW time over 1% of estimated
total program time). In order to detect ILD loops, profiling needs to
run before the meter pass. .branch.path and .branch.info
files are required.

-
feasibleild

Instrument loops that are both feasible and ILD (estimated SW time
over 1% of estimated total program time). In order to detect ILD

143

loops, profiling needs to run before the meter pass. .branch.path
and .branch.info files are required.

-hwselected Instrument only loops selected to run in HW. This needs to be
combined with –hw option.

-all Instrument all loops.

-none Do not instrument any loops. Meter still instruments the application
start and end, or the START_PROFILING and END_PROFILING
specified by the user (see below).

-loopfile
filename

Instrument loops specified in a file. The loop file should contain the
names of the loop to be measured but nothing else.

Other flags:

-sys Exclude the cost of system calls from the meter report.

-target
<targetname
>

Define the target platform. The default is acev.

5.2 START_PROFILING() and END_PROFILING()

METER instruments the start and the end of the program execution to measure the program total
time. It also provides the START_PROFILING() and END_PROFILING() macro so that the
user can specify where are the start and end points for program level measurement.
START_PROFILING() and END_PROFILING() can be inserted at any lexical location of
the program. However, if the user inserts them such that there are multiple
START_PROFILING() and END_PROFILING() encountered at run time, METER will
report the time between the first START_PROFILING() and the last END_PROFILING().

5.3 METER Result Files

METER results can be viewed in two files: .meter.info and .meter.out. METER pass
itself outputs the .meter.info indicating what loops have been instrumented. After running
the instrumented program on the target platform, user can look at the .meter.out file which
contains the results of performance measurement at both the program level and the loop level.

.meter.out file starts with a header summarizing program level performance data. All
timing data are in cycles.

Application time w/o overhead is the measured time for the entire application
(including time spent in system calls), excluding estimated overhead spent in the measurement

144

code. Application time w/o overhead & system time is the measured time for
the entire application excluding time spent in system calls and excluding estimated measurement
overhead. The percentage of time spent in system calls (system time) is also given at this
line. Application time w/o overhead & system time is only available for
ACE4k and ACEV platforms running RTEMS. If the user has specified
START_PROFILING() and END_PROFILING() in the program, the measured time
between the first START_PROFILING() and the last END_PROFILING() is listed in the
next line.

The loop level performance results are summarized in a table. For each loop, the result contains
the following fields:

Name Loop name. Same as the name used in ILD report

Total-% Percentage of time spent in this loop out of the total application
time w/o measurement overhead.

Total-time Total cycles spent in this loop, including SW time, HW time,
as well as configuration time. This is printed for –hw mode
only, as the SW time in

–sw mode is the same as Total-time.

SW-time Total cycles spent in the SW portion of the loop.

HW-time Total cycles spent in the HW datapath portion of the loop. For
–hw mode only.

Config-time Total cycles spent in HW configurations of the loop, including
both the initial configuration and any reconfigurations needed.
For –hw mode only.

For –hw mode, the total percentage of time spent in HW and re/configuration are summed up for
all loops and printed at the bottom of the HW-time and Config-time columns. The last line
of the .meter.out file in –hw mode also provides the total number of configuration changes
throughout the program execution.

6 SUIF to VCG (s2vcg)

s2vcg can be used along with xvcg to view the control-flow graphs of a user program at
different stages of the compilation process as well as to see detailed information about the
specific basic blocks such as feasibility, execution frequencies, basic block numbers, loop
structure and others. s2vcg takes a SUIF file and generates a separate .vcg file for each
procedure in it representing the CFG and the basic block properties. The .vcg file can be

145

viewed later with xvcg. Here is a brief description of the command-line options that control the
behavior of s2vcg:

§ -target specifies the hardware target that s2vcg should use to determine the basic block
feasibility.

§ -prof lets s2vcg extract the profiling information from the .branch.path and
.branch.info reports.

§ -instr, -event and -other options can be used to have s2vcg include the instruction,
the profiling and/or other basic block information (such as feasibility and basic block types)
respectively in the main CFG. By default the basic blocks in the CFG contain only their basic
block number, and all other detailed information can be accessed using xvcg’s Node
Information menu choice.

§ -func makes s2vcg output the CFG of a specified procedure. By default the CFG’s of all
procedures are generated.

§ -sfx can be used to replace the default .vcg file extension.

To ease the readability of the CFG, s2vcg uses a color-coding scheme to distinguish between
different kinds of blocks and graph edges. All forward edges use the default color (black), while
the backedges are shown in magenta. The border color of the basic blocks depends on the basic
block status and feasibility – non-kernel blocks are black, loop prologues and epilogues are
purple, hardware blocks are green, software blocks are blue, version switches are cyan, and
infeasible blocks can be easily recognized by their red border. In addition to that, loop entry
blocks have light-gray background, and CFG start and end blocks have orange background. By
exploring the differently colored regions of the graph, a user can easily identify any interesting or
problematic structures in the IR.

146

Appendix E. Efficient Pipelining of Nested Loops: Unroll-
and-Squash, an Innovative compiler Optimization
Technique used in the Nimble Compiler

Note: Paper submitted for review.

Abstract
The size and complexity of current custom VLSI have forced the use of high-level
programming languages to describe hardware, and compiler and synthesis technology to map
abstract designs into silicon. Many applications operating on large streaming data usually
require a custom VLSI because of high performance or low power restrictions. Since the data
processing is typically described by loop constructs in a high-level language, loops are the
most critical portions of the hardware description and special techniques are developed to
optimally synthesize them. In this paper, we introduce a new method for mapping nested
loops into hardware and pipelining them efficiently. The technique achieves fine-grain
parallelism even on strong intra- and inter-iteration data-dependent inner loops and, by
economically sharing resources, improves performance at the expense of a small amount of
additional area. We implemented the transformation within the Nimble Compiler
environment and evaluated its performance on several signal-processing benchmarks. The
method achieves up to 2X increase in the area efficiency compared to the best known
optimization techniques.

1 Introduction

Growing consumer market needs that require processing of large amount of data with a limited
power or dollar budget have led to the development of increasingly complex embedded systems
and application-specific IC’s. As a result, high-level compilation and sophisticated CAD tools
are used to automate and accelerate the intricate design process. These techniques raise the level
of abstraction and bring the hardware design closer and closer to the system engineer.

Since loops are the most critical parts of many applications (and, specifically, signal-processing
algorithms 1), the new generation of CAD tools needs to borrow many transformation and
optimization methods from traditional compilers in order to efficiently synthesize hardware from
high-level languages. A large body of work exists on translating software applications for
parallel execution on microprocessors. These techniques include software pipelining 1619 for
exploiting parallelism within single processors and loop parallelization for multi-processors 14.

However, direct application of these techniques does not produce efficient hardware since the
design tradeoffs in software compilation to a microprocessor are quite different from circuit
synthesis from a program. For instance, while the number of extra operators (instructions)
resulting from a particular software compiler transformation may not be critical as long as it
increases the overall pararallelism in a microprocessor, the amount of additional area that the

147

hardware synthesis produces may have much bigger impact on the performance and cost of a
custom VLSI design. On the other hand, in contrast to traditional compilers for microprocessors,
which are restrained by the paucity of registers in general-purpose processors and their limited
capacity for data transfer between registers and memory, hardware synthesis algorithms usually
have much more freedom in allocating registers and connecting them to memory.

When an inner loop has no loop-carried dependencies across iterations, many techniques such as
pipelining will provide efficient and effective parallel performance for both microprocessors and
custom VLSI. Unfortunately, a large number of loops in practical signal-processing applications
have strong loop-carried dependencies. Many cryptographic algorithms, such as unchained
Skipjack and DES for example, have a nested loop structure where an outer loop traverses the
data stream while the inner loop transforms each data block. Furthermore, the outer loop has no
strong inter-iteration data-dependencies while the inner loop has both inter- and intra-iteration
dependencies that prevent synthesis tools employing traditional compilation techniques from
mapping and pipelining them efficiently.

This paper introduces a new loop transformation that efficiently maps nested loops following this
pattern into hardware. The technique, which we call unroll-and-squash, exploits the outer loop
parallelism, concentrates more computation in the inner loop and improves the performance with
little area increase by allocating the hardware resources without expensive multiplexing and
complex routing. The technique was prototyped using the Nimble Compiler environment 1, and
its performance was evaluated on several signal-processing benchmarks. Unroll-and-squash
reaches comparable performance to traditional loop transformations with 2 to 10 times less area.

2 Motivation

for (i=0; i<M; i++) {

 a = data_in[i];

 for (j=0; j<N; j++) {

 b = f(a);

 a = g(b);

 }

 data_out[i] = a;

}

f

g

DFG

pipeline register

Figure 10: A simple example of a nested loop.

The importance of the new technique can be demonstrated using the simple set of loops shown in
Figure 10. The outer loop walks through the input data and writes out the result, while the inner
loop runs the data through several rounds of 2 operators – f and g, each completing in 1 clock
cycle. Little can be done to optimize this program considering only the inner loop. Because of
the cycle in the inner loop, it cannot be pipelined, i. e., it is not possible to execute several inner
loop iterations in parallel. The interval at which consecutive iterations are started is called the
initiation interval (II). As depicted in the DFG, the minimum II of the inner loop is 2 cycles, and
the total time for the loop nest is 2×M×N.

148

for (i=0; i<M; i+=2) {

 a
1
=data_in[i]; a

2
=data_in[i+1];

 for (j=0; j<N; j++) {

 b
1
 = f(a

1
); b

2
 = f(a

2
);

 a
1
 = g(b

1
); a

2
 = g(b

2
);

 }

 data_out[i]=a1; data_out[i+1]=a2;

}

DFG

pipeline register

f

g

f

g

Figure 11: A simple example: unroll-and-jam by 2.

Traditional loop optimizations such loop unrolling, flattening and permutation Error! Reference
source not found. fail to exploit the parallelism and improve the performance for this set of
loops. One successful approach in this case is the application of unroll-and-jam (Figure 11),
which unrolls the outer loop but fuses the resulting sequential inner loops to maintain a single
inner loop 28. After applying unroll-and-jam with a factor of 2 (assuming that M is even), the
resulting inner loop has 4 operators (twice the original number). Although this transformation
does not decrease the minimum II of the inner loop because the data-dependency cycle still
exists, the ability to execute several operators in parallel has the potential to speed up the
program. The II is 2 but the total time is half the original because the outer loop iteration count is
halved – 2×(M/2)×N=M×N. Thus, unroll-and-jam doubles the performance of the application at
the expense of a doubled operator count.

for (i=0; i<M; i+=2) {

 a1=data_in[i]; a2=data_in[i+1];

 b1 = f(a1);

 for (j=0; j<2*N-1; j++) {

 b2 = f(a2); a1 = g(b1);

 a2 = a1; b1 = b2;

 }

 a1 = g(b1);

 data_out[i]=a
2
; data_out[i+1]=a

1;

}

DFG

pipeline register

f

g

f

g

Figure 12: A simple example: unroll-and-squash by 2.

A more efficient way to improve the performance in this example is by applying the unroll-and-
squash technique introduced in this paper (Figure 12). This transformation, similarly to unroll-
and-jam, unrolls the outer loop but maintains a single inner loop. However, the data sets of the
different outer loop iterations run through the inner loop operators in a round-robin manner,
which allows the parallel execution of the operators. Moreover, the original operator count
remains unchanged. Application of unroll-and-squash to the sample loop nest by a factor of 2 is
similar to unroll-and-jam with respect to the transformation of the outer loop – the iteration count
is halved, and 2 outer loop iterations are processed in parallel. However, the operator count in the
inner loop remains the same as in the original program (2). By adding variable shifting/rotating
statements and pulling appropriate prolog and epilog out of the inner loop, the transformation
can be correctly expressed in software, although this may not be necessary if a pure hardware
implementation is pursued. Since the final II is 1, the total execution time of the loop nest is
1×(M/2)×(2×N)=M×N. Thus, unroll-and-squash doubles the performance without paying the
additional cost of extra operators.

149

f

f

g

g

f

g

Time

unroll-and-jam

unroll-and-squash

data
set 1

data
set 2

idle

Figure 13: Operator usage.

Figure 13 shows the operator usage over time in the unroll-and-jammed and unroll-and-squashed
versions of the program (it omits the prolog and the epilog necessary for unroll-and-squash).
Besides the fact that unroll-and-squash makes better use of the existing operators than unroll-
and-jam, another important observation is that it may be possible to combine both techniques
simultaneously. Unroll-and-jam can be applied with an unroll factor that matches the desired or
available amount of operators, and then unroll-and-squash can be used to further improve the
performance and achieve better operator utilization.

w1 (n) w 2(n) w3 (n) w 4(n)

w 1(n+1) w2 (n+1) w 3(n+1) w 4 (n+1)

g1 (high byte) g2 (low byte)

F

F

F

F

g5 (high byte) g6 (low byte)

cv4k

cv 4k+1

cv4k+2

cv4k+3

G

Counter
(k)

 (1 to 32)

mux mux

A B AB

Figure 14: Skipjack cryptographic algorithm.

A good example of a real-world application of unroll-and-squash is the Skipjack cryptographic
algorithm, declassified and released in 1998 (Figure 14). This crypto-algorithm encrypts 8-byte
data blocks by running them through 32 rounds of 4 table-lookups (F) combined with key-
lookups (cv), a number of logical operations and input selection. The F-lookups form a long
cycle that prevents the encryption loop from being efficiently pipelined. Again, little can be done
by optimizing the inner loop in isolation but, as with the simple example in the previous section,
proper application of unroll-and-squash (separately or together with unroll-and-jam) on the outer,
data-traversal loop can boost the performance significantly at a low extra area cost.

150

3 Method

The unroll-and-squash transformation optimizes the performance of 2-loop nests by executing
multiple outer loop iterations in parallel. The inner loop operators cycle through the separate
outer loop data sets, which allows them to work simultaneously. By doing efficient resource
sharing, this technique reduces the total execution time without increasing the operator count.
This section assumes that unroll-and-squash is applied to a nested loop pair where the outer loop
iteration count is M, the inner loop iteration count is N, and the unroll factor is DS (Data Sets).

3.1 Requirements

This section outlines the general control-flow and data-dependency requirements that must hold
for the proposed transformation to be applied to an inner-outer loop pair. In the next section, we
show how some of these conditions can be relaxed by using various code analysis and
transformation techniques such as induction variable identification, variable privatization, and
others.

Unroll-and-squash can be applied to any set of 2 nested loops that can be successfully unroll-
and-jammed 28. For a given unroll factor DS, it is necessary that the outer loop can be tiled in
blocks of DS iterations, and that the iterations in each block be parallel. The inner loop should
comprise a single basic block and have a constant iteration count across the different outer loop
iterations. The latter condition also implies that the control-flow always passes through the inner
loop.

3.2 Compiler Analysis and Optimization Techniques

A number of traditional compiler analysis, transformation and optimization techniques can be
used to determine whether a particular loop nest follows the requirements, to convert the loop
nest to one that conforms with them, or to increase the efficiency of unroll-and-squash. First of
all, most standard compiler optimizations that speed up the code or eliminate unused portions of
it can be applied before unroll-and-squash. These include constant propagation and folding, copy
propagation, dead-code and unreachable-code elimination, algebraic simplification, strength-
reduction to use smaller and faster operators in the inner loop, and loop invariant code motion.
Scalarization may be used to reduce the number of memory references in the inner loop and
replace them with register-to-register moves. Although very useful, these optimizations can
rarely enlarge the set of loops that unroll-and-squash can be applied to.

One way to eliminate conditional statements in the inner loop and make it a single basic block
(one of the restrictions) is to transform them to equivalent logical and arithmetic expressions (if-
conversion). Another alternative is to use code hoisting to move the conditional statements out of
the inner-outer loop pair, if possible.

In order for the outer loop to be tiled in blocks of DS iterations, its iteration count M should be a
multiple of DS. If this condition does not hold, loop peeling may be used, and M mod DS
iterations of the outer loop may be executed independently from the remaining M-(M mod DS).

The data-dependency requirement, i.e., the condition that the iterations of the outer loop
should be parallel, is much more difficult to determine or overcome. Moreover, if the outer

151

loop data dependency is an innate part of the algorithm that the loop nest implements, it is
usually impossible to apply unroll-and-squash. One approach to eliminate some of the scalar
variable data dependencies in the outer loops is by induction variable identification – it can
be used to convert all induction variable definitions in the outer loop to expressions of a
single index variable. Another method is modulo variable expansion, which replaces a
variable with several separate variables corresponding to different iterations and combines
them at the end. If the loops contain array references, dependence analysis 27 may be
employed to determine the applicability of the technique and array privatization might be
used to better exploit the parallelism. Finally, pointer analysis and other relevant techniques
(such as converting pointer to array accesses) may be employed to determine whether code
with pointer-based memory accesses can be parallelized.

3.3 Transformation

Once it is determined that a particular loop pair can be unroll-and-squashed by an unroll factor
DS, it is necessary to efficiently assign the functional elements in the inner loop to separate
pipeline stages, and apply the corresponding transformation to the software representation of the
loop. Although it is possible to have a purely hardware implementation of the inner loop (without
prolog and epilog in software), the outer loop still needs to be unrolled and have a proper
variable assignment. The sequence of basic steps that are used to apply unroll-and-squash to a
loop nest are presented below:

for (i=0; i<M; i++) {

 a = in[i];

 for (j=0; j<N; j++) {

 b = a + i;

 c = b - j;

 a = (c & 15) * k;

 }

 out[i] = a;
}

+

-

&

*

aij

++

15

k

Figure 15: Unroll-and-squash – building the DFG.

• Build the DFG of the inner loop (Figure 15). Live variables are stored in registers at
the top of the graph.

• Transform live variables that are used in the inner loop but defined in the outer loop
(i.e., registers that have no incoming edges) into cycles, i.e., output edges from the
register back to itself.

• “Stretch” the cycles in the graph so that the backedges start from the bottom and go
all the way to the registers at the top.

152

• Pipeline the resulting DFG ignoring the backedges (Figure 16) producing exactly DS
pipeline stages. Empty stages may be added or pipeline registers may be removed to
adjust the stage count to DS.

+

-

&

*

aij

++

15

+

-

&

*

aij

++

15

stage 1

stage 2

stage 3

stage 4
k k

Figure 16: Stretching cycles and pipelining.

• Perform variable expansion – expand each variable in the inner/outer loop nest to DS
versions. Some of the resulting variables may not actually be used later.

• Unroll the outer loop basic blocks (this includes the basic blocks that dominate and
post-dominate the inner loop).

• Generate prolog and epilog code to fill and flush the pipeling (unless the inner loop is
implemented purely in hardware).

• Assign proper variable versions in the inner loop. Note that some new (delay)
variables may be needed to handle expressions split across pipeline registers.

• Add variable shifting/rotation to the inner loop. Note that reverse shifting/rotation
may be required in the epilog or, alternatively, a proper assignment of variable
versions.

The outer loop data sets pass through the pipeline stages in a round-robin manner. All live
variables should be saved to and restored from the appropriate hardware registers before and
after execution.

3.4 Algorithm Analysis

The described loop transformation decreases the number of outer loop iterations from M to
M/DS. A software implementation will increase the inner loop iteration count from N to
DS×N-(DS-1) and execute some of the inner loop statements in the prolog and epilog in the outer
loop. The total iteration count of the loop nest stays approximately the same as the original –
M×N.

There are several factors that need to be considered in order to determine the optimal unroll
factor DS. One of the main barriers to performance increase is the maximum number of pipeline
stages in the inner loop. In a software implementation of the technique, this number is limited by
the operator count in the critical path in the DFG or may be smaller if different operator latencies

153

are taken into account. A pure hardware implementation bounds the stage count to the delay of
the critical path divided by the clock period. The pipeline stage count determines the number of
outer loop iterations that can be executed in parallel and, in general, the more data sets that are
processed in parallel the better the performance. Certainly, the calculation of the unroll factor DS
should be made in accordance to the outer loop iteration count (loop peeling may be required)
and the data dependency analysis discussed in the previous section (larger DS may eliminate the
parallelism).

Another important factor for determining the unroll factor DS is the extra area and, consequently,
extra power that comes with large values of DS. Unroll-and-squash adds only pipeline registers
to the existing operators and data feeds between them and, because of the cycle stretching, most
of them can be efficiently packed in groups to form a single shift register. This optimization may
decrease the impact of the transformation on the area and the power of the design, as well as
make routing easier – no multiplexors are added, in contrast to traditional hardware synthesis
techniques. In comparison with unroll-and-jam by the same unroll factor, unroll-and-squash
results in less area since the operators are not duplicated. The trade-off between speed, area and
power is further illustrated in the benchmark report (Section 5).

4 Implementation

Recently, there has been an increased interest in hardware/software co-design and co-synthesis
both in the academia and in the industry. Most hardware/software compilation systems focus on
the functional partitioning of designs amongst ASIC (hardware) and CPU (software) components
567. In addition to using traditional behavioral synthesis languages such as Verilog and VHDL,
synthesis from software application languages such as C/C++ or Java is also gaining popularity.
Some of the systems that synthesize subsets of C/C++ or C-based languages include HardwareC
21, SystemC 22, and Esterel C 23. DeepC, a compiler for a variation of the RAW parallel
architecture presented in 2, allows sequential C or Fortran programs to be compiled directly into
custom silicon or reconfigurable architectures. Some other novel hardware synthesis systems
compile Java 24, Matlab 26 and term-rewriting systems 25. In summary, the work in this field
clearly suggests that future CAD tools will synthesize hardware designs from higher levels of
abstraction. Some efforts in the last few years have been concentrated on automatic compilation
and partitioning to reconfigurable architectures 8910. Callahan and Wawrzynek 3 developed a
compiler for the Berkeley GARP architecture 4 which takes C programs and compiles them to a
CPU and FPGA. The Nimble Compiler environment 1 extracts hardware kernels (inner loops
that take most of the execution time) from C applications to accelerate on a reconfigurable co-
processor. This system was used to develop and evaluate the loop optimization technique
presented in this paper.

4.1 Target Architecture

Figure 17 demonstrates an abstract model of the new class of architectures that the Nimble
Compiler targets. The Agile hardware architecture couples a general purpose CPU with a
dynamically reconfigurable coprocessor. Communication channels connect the CPU, the
datapath, and the memory hierarchy. The CPU can be used to implement and execute

154

control-intensive routines and system I/O, while the datapath provides a large set of
configurable operators, registers and interconnects, allowing acceleration of computation-
intensive parts of an application by flexible exploitation of ILP.

Embedded CPU

Reconfigurable
Datapath

(e.g. FPGA)

On chip
SRAM/
Caches

Memory
Hierarchy

Figure 17: The target architecture – Agile hardware.

This abstract model describes a broad range of possible architectural implementations. The
Nimble Compiler is retargettable, and can be parameterized to target a specific platform
described by an Architecture Description Language. The target platforms that the Nimble
Compiler currently supports include GARP, ACE2 card and ACEV. Berkeley’s GARP is a
single-chip architecture with a MIPS 4000 CPU, a reconfigurable array of 24 by 32 CLBs,
on-chip data and instruction caches, and a 4-level configuration cache 4. The TSI Telsys
ACE2 is a board-level platform and consists of a microSparc CPU and Xilinx 4085 FPGAs
13. The ACEV hardware prototype combines a TSI Telsys ACE card 12 with a microSparc
CPU, and a PCI Mezzanine card 11, containing a Xilinx Virtex XCV 1000 FPGA. In the
ACE card configurations, a fixed wrapper is defined in the FPGA to provide support
resources to turn the FPGA into a configurable datapath coprocessor. The wrapper includes
the CPU interface, memory interface, local memory optimization structures, and a controller.

4.2 The Nimble Compiler

The Nimble Compiler (Figure 18) extracts the compute-intensive inner loops (kernels) from C
applications, and synthesizes them into hardware. The front-end, built using the SUIF compiler
framework 1, profiles the program to obtain a full basic block execution trace along with the
loops that take most of the execution time. It also applies various hardware-oriented loop
transformations to concentrate as much of the execution time in as few kernels as possible, and
generate multiple different versions of the same loop. Some relevant transformations include
loop unrolling, fusion and packing, distribution, flattening, pipelining, function inlining, branch
trimming, and others. A kernel selection pass chooses which kernel versions to implement in
hardware based on the results from the profiling, feasibility, and a quick synthesis step. The
back-end datapath synthesis tool takes the kernels (described as DFG’s) and generates the
corresponding FPGA bit streams that are subsequently combined with the rest of the C source
code by an embedded compiler to produce the final executable binary.

155

CHAI - C front-end Compiler
• instrumentation & profiling
• kernel extraction
• transformations & optimizations
• hardware/software partitioning

Datapath Synthesis
• technology mapping & module
generation

• floorplanning
• scheduling
• place & route

Embedded C compiler

Kernels as DFGs

FPGA bit stream C code

C code

Executable Image

Figure 18: Nimble Compiler flow.

Unroll-and-squash is one of the loop transformations that the Nimble Compiler considers before
kernel selection is performed. This newly discovered optimization benefits the Nimble
environment in a variety of ways. First of all, outer loop unrolling concentrates more of the
execution time in the inner loop and decreases the amount of transitions between the CPU and
the reconfigurable datapath. In addition, this transformation does not increase the operator count
and, assuming efficient implementation of the register shifts and rotation, the FPGA area is used
optimally. Finally, unroll-and-squash pipelines loops with strong intra- and inter-iteration data
dependencies and can be easily combined with other compiler transformations and synthesis
optimizations.

5 Experimental Results

We compared the performance of unroll-and-squash on the main computational kernels of
several signal-processing benchmarks to the original loops, pipelined original loops, and
pipelined unroll-and-jammed loops. The collected data shows that unroll-and-squash is an
effective way to speed up such applications at a relatively low area cost and suggests that this is a
valuable compiler and behavioral synthesis technique in general.

5.1 Target Architecture Assumptions

The benchmarks were compiled using the Nimble Compiler with the ACEV target platform. Two
memory references per clock cycle were allowed, and no cache misses were assumed. The latter
assumption is not too restrictive for comparison purposes because the different transformed

156

versions have similar memory access patterns. Furthermore, a couple of the benchmarks have
been specially optimized for hardware and have no memory references at all.

5.2 Benchmarks

Benchmark Description

Skipjack-mem Skipjack cryptographic algorithm: encryption, software
implementation with memory references

Skipjack-hw Skipjack cryptographic algorithm: encryption, software
implementation optimized for hardware without memory
references

DES-mem DES cryptographic algorithm: encryption, SBOX
implemented in software with memory references

DES-hw DES cryptographic algorithm: encryption, SBOX
implemented in hardware without memory references

IIR 4-cascaded IIR biquad filter processing 64 points

Table 5: Benchmark description.

Our benchmark suit consists of two cryptographic algorithms (unchained Skipjack and DES) and
a filter (IIR) described in Table 5. Two different versions of Skipjack and DES are used.
Skipjack-mem and DES-mem are regular software implementations of the corresponding crypto-
algorithms with memory references. Skipjack-hw and DES-hw are versions specifically
optimized for hardware implementation – they use local ROM for memory lookups and domain
generators for particular bit-level operations. Finally, IIR is a floating-point filter implemented
on the target platform by modeling pipelinable floating-point arithmetic operations.

5.3 Results and Analysis

Table 6 presents the raw data collected through our experiments. It compares ten different
versions of each benchmark – an original, non-pipelined version, a pipelined version, unroll-and-
squashed versions by factors of 2, 4, 8 and 16, and, finally, pipelined unroll-and-jammed
versions by factors of 2, 4, 8 and 16. The table shows the initiation interval in clock cycles, the
area of the designs in rows and the register count. One should note that if the initial loop pair
iteration count is M×N, after unroll-and-jam by a factor DS it becomes M×N/DS.

157

original pipelined squash(2) squash(4) squash(8) squash(16) jam(2) jam(4) jam(8) jam(16)

II (cycles) 22 21 12 9 8 7 23 28 38 70

Area (rows) 49 57 62 91 143 256 111 219 435 867

Registers
(count) 6 13 18 44 92 197 25 49 97 193

II (cycles) 19 19 11 7 4 3 19 19 19 19

Area (rows) 41 41 56 86 143 262 80 158 314 626

Registers
(count) 8 8 21 50 105 218 16 32 64 128

II (cycles) 16 13 9 7 5 5 17 25 41 73

Area (rows) 69 72 84 143 174 263 141 279 555 1107

Registers
(count) 5 8 19 60 99 174 15 29 57 113

II (cycles) 8 5 5 3 3 2 5 5 5 5

Area (rows) 27 30 36 56 99 141 57 111 219 435

Registers
(count) 5 8 13 33 73 115 15 29 57 113

II (cycles) 56 13 29 15 9 5 13 18 33 65

Area (rows) 106 131 118 138 177 258 253 497 985 1961

Registers
(count) 2 26 14 34 73 154 48 92 180 356

DES-hw

IIR

Benchmark

Skipjack-mem

Skipjack-hw

DES-mem

Table 6: Raw data – initiation interval (II), area and register count.

The normalized data corresponding to the figures in Table 6 is presented in Table 7. The base
case is the original, non-pipelined version of the benchmarks. A detailed analysis of these values
follows.

158

original pipelined squash(2) squash(4) squash(8) squash(16) jam(2) jam(4) jam(8) jam(16)

Speedup 1.00 1.05 1.83 2.44 2.75 3.14 1.91 3.14 4.63 5.03
Area 1.00 1.16 1.27 1.86 2.92 5.22 2.27 4.47 8.88 17.69

Registers 1.00 2.17 3.00 7.33 15.33 32.83 4.17 8.17 16.17 32.17
Speedup /

Area 1.00 0.90 1.45 1.32 0.94 0.60 0.84 0.70 0.52 0.28

Speedup 1.00 1.00 1.73 2.71 4.75 6.33 2.00 4.00 8.00 16.00
Area 1.00 1.00 1.37 2.10 3.49 6.39 1.95 3.85 7.66 15.27

Registers 1.00 1.00 2.63 6.25 13.13 27.25 2.00 4.00 8.00 16.00
Speedup /

Area 1.00 1.00 1.26 1.29 1.36 0.99 1.03 1.04 1.04 1.05

Speedup 1.00 1.23 1.78 2.29 3.20 3.20 1.88 2.56 3.12 3.51
Area 1.00 1.04 1.22 2.07 2.52 3.81 2.04 4.04 8.04 16.04

Registers 1.00 1.60 3.80 12.00 19.80 34.80 3.00 5.80 11.40 22.60
Speedup /

Area 1.00 1.18 1.46 1.10 1.27 0.84 0.92 0.63 0.39 0.22

Speedup 1.00 1.60 1.60 2.67 2.67 4.00 3.20 6.40 12.80 25.60
Area 1.00 1.11 1.33 2.07 3.67 5.22 2.11 4.11 8.11 16.11

Registers 1.00 1.60 2.60 6.60 14.60 23.00 3.00 5.80 11.40 22.60
Speedup /

Area 1.00 1.44 1.20 1.29 0.73 0.77 1.52 1.56 1.58 1.59

Speedup 1.00 4.31 1.93 3.73 6.22 11.20 8.62 12.44 13.58 13.78
Area 1.00 1.24 1.11 1.30 1.67 2.43 2.39 4.69 9.29 18.50

Registers 1.00 13.00 7.00 17.00 36.50 77.00 24.00 46.00 90.00 178.00
Speedup /

Area 1.00 3.49 1.73 2.87 3.73 4.60 3.61 2.65 1.46 0.75

IIR

Benchmark

Skipjack-mem

Skipjack-hw

DES-mem

DES-hw

Table 7: Normalized data – estimated speedup, area, registers and cost (speedup/area).

Unroll-and-squash achieves better speedup than regular pipelining, and usually wins over the
worse case unroll-and-jam (Figure 19). However, with large unroll factor unroll-and-jam
outperforms unroll-and-squash by a big margin in most cases. Still, an interesting observation to
make is the fact that, for several benchmarks, unroll-and-jam fails to obtain a speedup
proportional to the unroll factor for larger factors (Skipjack-mem, DES-mem and IIR). The
reason for this is that the increase of the unroll factor proportionally increases the operator count
and, subsequently, the number of memory references. Since the amount of memory references is
limited to two per clock cycle, more memory references increase the II and decrease the relative
speedup. Unlike unroll-and-jam, unroll-and-squash does not change the number of memory
references – the initial amount of memory references form the lower bound for the minimum II.
Therefore, designs with many memory references may benefit from unroll-and-squash more than
unroll-and-jam at greater unroll factors. Additionally, unroll-and-squash, in general, performs
worse on designs with small original II (Skipjack-hw and DES-hw) because there is not much
room for improvement.

159

0.00

5.00

10.00

15.00

20.00

25.00

30.00

Skipjack-mem Skipjack-hw DES-mem DES-hw IIR

Speedup

original

pipelined

squash: 2,4,8,16

jam: 2,4,8,16

Figure 19: Speedup.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

Skipjack-mem Skipjack-hw DES-mem DES-hw IIR

Area

original

pipelined

squash: 2,4,8,16

jam: 2,4,8,16

Figure 20: Area.

The speedup from the different transformations comes at the expense of additional area (Figure
20). Undoubtedly, since unroll-and-squash adds only registers while unroll-and-jam also
increases the number of operators in proportion to the unroll factor, unroll-and-squash results in
much less extra area. This can be very clearly seen from the results of the floating point
benchmark (IIR) depicted in Figure 20.

160

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Skipjack-mem Skipjack-hw DES-mem DES-hw IIR

Speedup/Area

original

pipelined

squash: 2,4,8,16

jam: 2,4,8,16

Figure 21: Execution efficiency (speedup/area) – higher is better.

In order to evaluate which technique is better, we can look at the speedup to area ratio (Figure
21). This value captures the performance of the design per unit area – higher speed and smaller
design leads to larger ratio, while lower speed and larger area results in smaller ratio. By this
measure, unroll-and-squash wins over unroll-and-jam in most cases, although some interesting
trends can be noted in this regard. The ratio decreases with increasing unroll factor when unroll-
and-jam is applied to benchmarks with memory references – this is caused by the higher II due to
a congested memory bus. However, for designs without memory references unroll-and-jam
increases the operator count with the unroll factor and does not change the II, so the ratio stays
about constant. The ratio for unroll-and-squash stays about the same or decreases slightly with
higher unroll factors in most cases. An obvious exception is the floating point benchmark where
higher unroll factors lead to larger ratios. This can be attributed to the large original II and small
minimum II that unroll-and-squash can achieve – a much higher unroll factor is necessary to
reach to the point where the memory references limit the II.

161

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

%

Skipjack-mem Skipjack-hw DES-mem DES-hw IIR

Operators (% of area)

original

pipelined

squash: 2,4,8,16

jam: 2,4,8,16

Figure 22: Operators as percent of the area.

Finally, it is interesting to observe how the operator count as a proportion of the whole area
varies across the different transformations (Figure 22). While this value remains about the same
for unroll-and-jam applied with different unroll factors, it sharply decreases for unroll-and-
squash with higher unroll factors. This is important to note because our prototype implements the
registers as regular operators, i.e., each taking a whole row. Considering the fact that they can be
much smaller, the presented values for area are fairly conservative and the actual speedup per
area ratio will increase significantly for unroll-and-squash in the final hardware implementation.
Furthermore, many of the registers in the unroll-and-squashed designs are shift/rotate registers
that can be implemented even more efficiently with minimal interconnect.

6 Related Work

An extensive survey of the available software pipelining techniques such as modulo scheduling
algorithms, perfect pipelining, Petri net model and Vegdahl’s technique, and a comparison
between the different methods is given in 17. Since basic-block scheduling is an NP-hard
problem 18, most effort on the topic has been concentrated on a variety of heuristics to reach
near-optimal schedules. The main disadvantage of all these methods when applied to loop nests
is that they consider and transform only inner-most loops resulting in poor exploitation of
parallelism as well as lower efficiency due to setup costs. Lam’s hierarchical reduction scheme
aims to overlap execution of the prolog and the epilog of the transformed loop with operations
outside the loop 19. The original Nimble Compiler approach to hardware/software partitioning of
loops may pipeline outer loops but considers inner loop entries as exceptional exits from
hardware 1. In general, all techniques that perform scheduling across basic block boundaries do
not handle nested loop structures efficiently 1520.

162

7 Conclusions

In this paper we showed that high-level language hardware synthesis needs to employ
traditional compilation techniques but most of the standard loop optimizations cannot be
directly used. We presented an efficient loop pipelining technique that targets nested loop
pairs with iteration-parallel outer loop and strong inter- and intra-iteration data-dependent
inner loop. The technique was evaluated using the Nimble compiler framework on several
signal-processing benchmarks. Unroll-and-squash improves the performance at a low
additional area cost through efficient resource sharing and proved to be an effective way to
exploit parallelism in nested loops mapped to hardware.

References
1. Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, and J. Stockwood. Hardware-software

co-design of embedded reconfigurable architectures, Proc. 37th Design Automation
Conference, pp. 507-512, Los Angeles, CA, 2000.

2. J. Babb, M. Rinard, A. Moritz, W. Lee, M. Frank, R. Barua, and S. Amarasignhe.
Parallelizing Applications into Silicon. Proc. IEEE on FCCM, Napa Valley, April 1999.

3. T. Callahan, and J. Wawrzynek. Instruction level parallelism for reconfigurable computing,
Proc. 8th International Workshop on Field-Programmable Logic and Applications,
September 1998.

4. J. R. Hauser, and J. Wawrzynek, Garp: A MIPS processor with a reconfigurable
coprocessor, Proc. FCCM ’97, 1997.

5. W. Wolf. Hardware/software co-design of embedded systems, Proc. IEEE, July 1994.

6. B. Dave, G. Lakshminarayana, and N. Jha. COSYN: hardware-software co-synthesis of
embedded systems, Proc. 34th Design Automation Conference, 1997.

7. S. Bakshi, and D. Gajski. Partitioning and pipelining for performance-constrained
hardware/software systems, IEEE Transactions on VLSI Systems, 7(4), December 1999.

8. R. Dick, and N. Jha. Cords: hardware-software co-synthesis of reconfigurable real-time
distributed embedded systems, Proc. Intl. Conference on Computer-Aided Design, 1998.

9. M. Kaul, et al. An automated temporal partitioning and loop fission approach for FPGA
based reconfigurable synthesis of DSP applications, Proc. 36th Design Automation
Conference, 1999.

10. M. Gokhale, and A. Marks. Automatic synthesis of parallel programs targeted to
dynamically reconfigurable logic arrays, Proc. FPL, 1995.

11. Alpha Data Parallel Systems, ADM-XRC PCI Mezzanine Card User Guide. Version 1.2,
1999.

163

12. TSI Telsys, ACE Card Manual, 1998.

13. TSI Telsys, ACE2 Card Manual, 1998.

14. M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, E. Bugnion and
M. S. Lam. Maximizing Multiprocessor Performance with the SUIF Compiler, IEEE
Computer, December 1996.

15. Steven Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann
Publishers, San Francisco, CA, 1997.

16. B. R. Rau, and J. A. Fisher. Instruction-level parallel processing: history, overview, and
perspective. The Journal of Supercomputing, 7, pp. 9-50, 1993.

17. Vicki H. Allan, Reese B. Jones, Randall M. Lee, and Stephen J. Allan. Software Pipelining.
In ACM Computing Surveys, 27(3):367-432, September 1995.

18. Michael R. Garey, and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Co., San Francisco, CA, 1979.

19. Monica Lam. Software Pipelining: An Effective Scheduling Technique for VLIW
Machines. In Proceedings in SIGPLAN ’88 Conference on Programming Language Design
and Implementation (PLDI), pp. 318-328, 1988.

20. Andrew Appel, and Maia Ginsburg. Modern Compiler Implementation in C. Cambridge
University Press, Cambridge, United Kingdom, 1998.

21. David Ku, and Giovanni De Micheli. High Level Synthesis of ASICs under Timing and
Synchronization Constraints, Kluwer Academic Publishers, Boston, MA 1992.

22. SystemC, http://www.systemc.org.

23. Luciano Lavagno, Ellen Sentovich. ECL: A Specification Environment for System-Level
Design, Proc. DAC ’99, New Orleans, pp. 511-516, June 1999.

24. Xilinx, http://www.lavalogic.com.

25. Arvind and X. Shen. Using Term Rewriting Systems to Design and Verify Processors,
IEEE Micro Special Issue on Modeling and Validation of Microprocessors, May/June
1999.

26. M. Haldar, A. Nayak, A. Kanhere, P. Joisha, N. Shenoy, A. Choudhary and P. Banerjee. A
Library-Based Compiler to Execute MATLAB Programs on a Heterogeneous Platform,
ISCA 13th International Conference on Parallel and Distributed Computing Systems (ISCA
PDCS-2000), August 2000.

27. Dror E. Maydan, Accurate Analysis of Array References, Ph.D. thesis, Stanford University,
Computer Systems Laboratory, September 1992.

164

28. D. Callahan, S. Carr, and K. Kennedy. Improving register allocation for subscripted
variables. In Proceedings of the SIGPLAN '90 Conference on Programming Language
Design and Implementation, White Plains, NY, June 1990.

29. F. E. Allen and J. Cocke. A catalogue of optimizing transformations. In Design and
Optimization of Compilers, Prentice-Hall, 1972

165

Appendix F. The Hardware-Software Partitioning Approach
of the Nimble Compiler

Paper Published in Proceedings, 37th Design Automation Conference (DAC 2000),
June, 2000. Copyright ACM/IEEE.

166

Hardware-Software Co-Design of Embedded
Reconfigurable Architectures

Yanbing Li, Tim Callahan*, Ervan Darnell**, Randolph Harr, Uday Kurkure, Jon Stockwood

 Synopsys Inc., 700 East Middlefield Rd. Mountain View, CA 94043
* Department of EECS, Univ. of California, Berkeley, CA 94720

** Silicon Spice, 415 East Middlefield Rd., Mountain View, CA 94043

Abstract
In this paper we describe a new hardware/software partitioning
approach for embedded reconfigurable architectures consisting of
a general-purpose processor (CPU), a dynamically reconfigurable
datapath (e.g. an FPGA), and a memory hierarchy. We have
developed a framework called Nimble that automatically compiles
system-level applications specified in C to executables on the
target platform. A key component of this framework is a
hardware/software partitioning algorithm that performs fine-
grained partitioning (at loop and basic-block levels) of an
application to execute on the combined CPU and datapath. The
partitioning algorithm optimizes the global application execution
time, including the software and hardware execution times,
communication time and datapath reconfiguration time.
Experimental results on real applications show that our algorithm
is effective in rapidly finding close to optimal solutions.

1. Introduction
Reconfigurable computing using FPGAs is emerging as an
alternative to conventional ASICs and general-purpose
processors[1]. Reconfigurable architectures can be post-
fabrication customized for a wide class of applications, including
multi-media, communications, networking, graphics and
cryptography, to achieve significantly higher performance over
general or even special-purpose processor alternatives (such as
DSPs). For convenience, we will use the term FPGA to refer to
any type of reconfigurable datapath, whether implemented using
FPGAs or other forms of reconfigurable logic.
Recent developments in reconfigurable architectures have
demonstrated that a tightly coupled reconfigurable co-processor
with a general purpose CPU can achieve significant speedup on a
general class of applications[6]. An abstract model of this new
class of architecture is shown in Figure 1. The architecture also
contains memory hierarchy and communication channels that
connect the CPU, datapath, and memory. The CPU can be used to
implement control-intensive functions and system I/O, leaving the
datapath to accelerate computation-intensive parts of an

application. Th
platform for a
a better transis
and ASIC of c
To exploit the
architectures, w
Nimble that
specified in C
core of the
partitioning a
and the datapa
work at mode
function level
algorithm perf
block levels
(ILP) to signif
There have b
conventional
containing AS
However, the
reconfigurable
two-dimension
temporal dom
only spatial
physical imple
areas of the h
architectures,
algorithm nee
the FPGA can
execution to im
In this paper,
input to the a
termed kerne
application. E

Reconfigurable
Datapath

(e.g. FPGA)

Embedded CPU

On chip
SRAM /
Caches
Figure 1. The target architecture.
is class of architecture defines a common, reusable
wide range of applications, and potentially provides
tor utilization than a single CPU or combined CPU
omparable silicon area.
potential performance gain provided by this class of
e have developed a retargetable framework named

automatically compiles system-level applications
 to executables running on these platforms. At the
 Nimble Compiler is a hardware/software
lgorithm that partitions applications onto the CPU
th. As opposed to many co-synthesis algorithms that
rate to coarse granularities (such as task-level and
) and extract task-level parallelism [2][7][10], our
orms fine grain partitioning at the loop and basic
to exploit potential instruction-level parallelism
icantly accelerate important loops in the FPGA.
een considerable research efforts in co-design of

embedded hardware/software architectures
ICs, which we will briefly review in Section 2.
partitioning problem for architectures containing

 FPGAs has a different requirement: it demands a
al partitioning strategy, in both spatial and
ains, while the conventional partitioning involves
partitioning. Here, spatial partitioning refers to
mentation of different functionality within different
ardware resource. For dynamically reconfigurable
besides spatial partitioning, the partitioning

ds to perform temporal partitioning, meaning that
 be reconfigured at various phases of the program
plement different functionality.

we focus on the temporal partitioning aspect. The
lgorithm is a set of candidate loops for hardware,
ls, that have been extracted from the source
ach loop has a software version and one or more

167

hardware versions that represent different delay and area tradeoffs.
The partitioning algorithm selects which loops to implement in the
FPGA, and which hardware version of each loop should be used
to achieve the highest application-level performance. Key issues
with this approach are:
• The partitioning algorithm must effectively capture the

dynamic reconfiguration costs. This is difficult as the number
of reconfigurations for one kernel depends on which other
kernels may go into the hardware.

• The algorithm must integrate compiler optimizations and
hardware design space exploration into the
hardware/software partitioning process.

• Partitioning must be guided by various forms of profiling
information to accurately assess the tradeoffs between
hardware and software implementations.

The rest of the paper is organized as follows. Section 2 reviews
related work. In Section 3, we first present an overall picture of
the Nimble Compiler framework, of which our partitioning
algorithm is a component, and then describe the formulation of the
hardware/software partitioning problem itself. Section 4 explains
the details of the partitioning algorithm. Section 5 presents the
experimental results on several benchmarks.

2. Previous Work
Related work includes studies from general areas of
hardware/software co-design and reconfigurable computing.
Earlier work in hardware-software co-design mainly focused on
hardware-software partitioning. Most of the partitioning
algorithms model the system based on an architectural template of
a CPU (software) and an ASIC (hardware)[4] [5][7][11]. Recent
work in co-synthesis has used a more generalized model
consisting of heterogeneous multiprocessors with various
communication topologies [2][9][10]. Although some of the
above techniques use highly abstract architecture models that
might be retargetable to reconfigurable architectures, none of them
can represent the special characteristics of the platform such as the
reconfiguration overhead or possibility of both spatial and
temporal partitioning.
Some recent efforts in reconfigurable computing address
automatic compilation and partitioning to reconfigurable
architectures. Callahan et al. [1] developed a compiler for the
Berkeley GARP architecture[6] which compiles source
applications in C to a CPU and FPGA. They use a feasibility-
driven approach that does not take performance into account
during the hardware/software partitioning process. Gokhale et al.
worked on compiling C onto reconfigurable processors but did not
address the hardware-software partitioning problem directly[12].
Dick and Jha proposed the CORDS algorithm to synthesize real-
time tasks onto distributed systems containing dynamically
reconfigurable FPGAs [3]. CORDS uses a coarse, task-level input
represented by acyclic graphs and exploits task-level parallelism.
Kaul et al. [8] recently proposed an ILP based algorithm for
temporal partitioning of reconfigurable designs that also starts
with acyclic task graph specifications. The algorithm finds optimal
solutions but has a very high computation cost. Its acyclic task
inputs only allow a single configuration of a task and therefore use
a simple configuration cost model. Both works assume a single
implementation of a task in the hardware and do not explore
compiler optimizations and the hardware design space to evaluate
tradeoffs between different implementations of the same task.

3. P
In this
enviro
and
partitio

3.1
The N
on ex
accele
of the
The N
the ta
Langu
the sys
of the
Our st
applica
implem
focuse
hardw
progra
and
Optim
time in
partitio
select
also ap
to gen
transfo
differe
hardw
FPGA
instruc
includ
branch
applica
perform
synthe
implem

Preprocessing
Kernel extraction
Compiler transformations
Performance profiling

HW / SW partitioningHW / SW partitioning

Datapath synthesis

HW Kernels as DFGs

C code

FPGA bit stream C code to
run on CPU

Kernels as CFGs
labeled with profiling info

Architecture
Description
Language

(ADL)
Figure 2. The Nimble Compiler flow: an overview.
roblem Formulation
 section, we first give an overview of the Nimble Compiler
nment. This provides a context for the problem formulation
cost function formulation of our hardware/software
ning algorithm, which is the focus of this paper.

Nimble Compilation Overview
imble Compiler environment depicted in Figure 2 focuses
tracting hardware kernels from the source application to
rate on the FPGA. It is originally based on an early version
GARP compiler[1].
imble Compiler is retargetable and can be parameterized to
rget platform described by the Architecture Description
age (ADL). ADL defines the components and parameters of
tem such as the type of processor being used, characteristics
reconfigurable array, memory hierarchy, etc.
udies show that loops represent a significant portion of
tion execution time, and yet are usually compact enough to
ent in modest hardware resources. Therefore, the compiler

s on finding the most profitable loops to extract out as
are kernels. At the front end of the Nimble flow, the C
m is preprocessed to extract the loop-level representations
parameters needed by the partitioning algorithm.
izations are applied to concentrate much of the execution
 as few loops as possible. A preprocessing step provides the
ning algorithm a set of hardware candidates (kernels) to

from. Preprocessing not only extracts loops as kernels, but it
plies various hardware-oriented compiler transformations

erate multiple optimized versions of the same loop. These
rmations are important because transformed code has
nt performance and area tradeoffs when implemented in
are. For example, an unrolled loop requires more area in the
, but it may accelerate the execution by exposing increased
tion-level parallelism. Potentially useful transformations
e loop unrolling, fusion, pipelining, procedure inlining, and
 trimming, just to name a few. Profiling performed on the
tion and each extracted kernel to estimate the software
ance, memory bandwidth need, trace behavior etc. A quick

sis is done to estimate the delay and area of the hardware
entations.

168

The extracted kernels, internally represented as basic block control
flow graphs (CFGs), are fed to the hardware/software partitioner
which decides which kernels will go into the hardware. The
selected hardware kernels are then input into our backend datapath
synthesis tool to generate the corresponding FPGA bit streams,
which are then used to configure the FPGA for a kernel’s
execution at runtime.

3.2 Hardware/software Partitioning Problem
Formulation
We now define the hardware/software partitioning problem. The
input to the partitioning step comprises two parts: the target
architecture, and the set of loops/kernels extracted from the source
application. The algorithm uses a fixed FPGA total size constraint
as described in ADL, along with other parameters, such as
configuration times and memory bandwidth.
Representing possible hardware candidates is a set of loops L,
with each loop Li having multiple kernels Kj, which include an
original software version and several hardware versions generated
from compiler transformed code. Figure 3 shows an example with
two versions for one loop. Figure 3(a) is the original CFG
implemented totally in hardware. Figure 3(b) shows a transformed
version after unrolling the loop once and trimming off an
infrequently executed branch (marked A) by keeping it in
software. Con, En, and Ex are overheads incurred by putting a
kernel in hardware and they refer to configuration cost, hardware
entry and exit costs, respectively.
The kernels and the basic blocks are labeled with profiling
information obtained in the preprocessing step of the Nimble flow
(Figure 2). Profiling data includes the total software execution
time for each kernel, average time for each basic block and
execution frequencies of basic blocks. Hardware implementation
data includes the hardware area and delay for each kernel. Details
of our profiling approach is beyond the scope of this paper and are
not discussed further here.
As pointed out earlier, we aim to exploit ILP in loops instead of
task-level parallelism. Therefore, the compiler currently only
supports mutually exclusive execution of the CPU and FPGA.
This simplifies the partitioner since it does not have to consider
multiple loops fired off simultaneously. Loops are executed
purely sequentially according to their original C specification even
if pulled off onto the FPGA for acceleration.
The goal of the partitioning algorithm is to select whether to put
each loop into software or hardware, and if a loop is selected as
hardware, which version to use, such that the execution time for
the whole application is minimized. Note that while the
partitioning is generally done at loop-level, the partitioner can
make basic-block level decisions by putting only a subset of the
basic blocks of a kernel CFG into the hardware.

3.3 Global Cost Function
As the algorithm tries to maximize the overall application
performance, it uses a global cost function that incorporates the
hardware and software execution times, hardware kernel entry and
exit delay, and hardware reconfiguration time. Equation 1 shows
the global cost of all loops Tall_loops, which is the sum of time spent
in each individual loop T(Li). T(Li) denotes the total time spent in
loop Li, including all its iterations and entries.

T T Lall loops i
i L

_ ()=
∈
∑ (1)

T L T L Iter Li sw i i() () ()= • , if Li is in software. (2)

(iLT

Tconfig

As sh
softwa
averag
Iter(L
Suppo
hardw
terms:
1. E

s
T

2. E
i
F

3. C
i
S
o
p
e

4. C
p
t
m
a
G
c
c
(
m
n

Con

En

Ex

Configuration

HW entry, live
variables
copy to HW

HW exit, live
variables
copy to SW

Ex1

Ex2

A

Con

En

Ex

A1

A2

Ex3

ConEn

(a) (b)

Basic block

Continue
in SW

Continue
in SW

HW

HW
Figure 3. Multiple hardware kernels for one loop.
)(
)()(
)()(

)()(
)()()

,

,,2

,,2

,

,,

jiconfig

jijiswhw

jijihwsw

ijisw

ijihwj

KLT
KLExKLT
KLEnKLT

LIterKLT
LIterKLTK

+
•+
•+

•+
•=

if kernel Kj of Li is in hardware (3)

L K N L T L K
N L T L K

i j miss i miss i j

hit i hit i j

() () ()
() ()

, ,

,

= •
•+

 (4)

own in Equation 2, if Li is selected to be implemented in
re only, its execution time can be characterized as the
e time per iteration Tsw(Li) times its number of iterations

i). The computation of hardware time is more complex.
se we put kernel version Kj of loop Li in hardware. The
are loop time shown in Equation 3 is composed of several

xecution time spent in the hardware itself. Similar to
oftware time, it is the average hardware time per iteration
hw(Li, Kj) times the number of iterations Iter(Li).
xecution time spent in the software if kernel Kj only

mplements a portion of the loop in the FPGA. (See
igure3(b) for an example of a partial loop in hardware.)
ommunication time between hardware and software, which

nvolves the copying of live variables to and from the FPGA.
ince variable transfer only happens when the program enters
r exits from hardware, it is obtained by multiplying the cost
er transfer (Thw2sw or Tsw2hw) and the number of hardware
ntries En(Li, Kj) and exits Ex(Li, Ki), respectively.
onfiguration time of the loop on the FPGA. Unlike the
revious terms which only depend on decisions made about
he current loop Li, configuration time depends on decisions
ade for other loops that interleave with Li during

pplication execution. Some architectures (such as the
ARP[6]) utilize a configuration cache to store recent

onfigurations, so that they can be quickly reconfigured. The
onfiguration cost for the cache miss (Tmiss (Li, Kj)) and hit
Thit (Li, Kj)) can be dramatically different, therefore, they
ust be computed separately as shown in Equation 4. The

umbers of configuration cache hits and misses (Nhit (Li) and

169

Nmiss (Li)) for a loop depend what hardware/software
partitioning decisions are made for all loops.

If configuration time is not included, optimizing execution time
can be reduced to locally selecting the fastest implementation of
each loop that satisfies the FPGA size constraint. However,
because of the complexity of computing configuration cost, the
partitioning problem is NP-complete, and involves evaluating
loops in a global cost function to find the optimal solution.

4. Algorithm Flow
Since the total number of kernels can be large for many
applications, we need to deploy a heuristic algorithm to efficiently
solve the hardware/software partitioning problem. The two key
heuristics that we have applied are:
1. Reducing the number of loops and kernels that the algorithm

needs to analyze, by focusing solely on “interesting” loops
that contribute significantly to the application time.

2. For the remaining loops, partitioning them into small clusters
and performing optimal selection in each loop cluster.

Based on the above heuristics, the partitioning algorithm consists
of the following main steps.
1. Loop entry trace profiling (LEP). LEP generates a complete

trace that records all loops entries, such that the configuration
cost for all loops can be inferred.

2. Interesting loop detection (ILD). ILD screens all hardware
candidate loops and only selects a subset of “interesting”
loops.

3. Intra-loop kernel selection. This selects the best hardware
kernel among the multiple versions of a loop implementation.

4. Inter-loop selection. Selects among loops and decides which
go into hardware and software, respectively.

Steps 2 and 3 apply the first heuristic, in an attempt to cut down
the number of loops and kernels to be considered. Step 4 applies
the second heuristic and is the most critical step of the algorithm.
The rest of this section describes these steps in detail.

4.1 Loop Entry Trace Profiling and
Compression
When a hardware loop is entered for the first time, it needs to be
configured onto the FPGA. If it is entered again before being
overwritten by another loop, it does not require reconfiguration.
To compute configuration cost, we need to know the exact
runtime sequence of all hardware candidate loops (i.g. the entries
to these loops). Loop entry trace profiling (LEP) identifies and
instruments loop entries to generate a trace. The trace can
potentially be huge, e.g. encoding four frames using standard
MPEG-2 generates ~200M bytes of loop entry trace. LEP
incorporates an online compression scheme to encode the trace.
Loop trace compression not only saves storage space, but more
importantly, the compact representation allows fast traversing of
the trace in later steps of the algorithm. For the MPEG-2 encoding
example, the trace size is reduced to several Kbytes after
compression.

4.2 Interesting Loop Detection
While the goal of the partitioning algorithm is to select loops to
implement in the FPGA to achieve maximum overall acceleration,
Amdahl’s law implies that we should focus on loops that represent
a large portion of the application total time. We have implemented
an interesting loop detector (ILD), which reports the percentage
contribute a loop makes to total application time. Table 1 shows
the ILD results for several benchmarks. The third column of the

table s
of the
total c
though
only a
contrib
Theref
compu
achiev
most o
all loo
insigni
overhe

4.3
Since
genera
selecti
the bes
cuts d
step—
in har
selecti
also k
Step 4
The cr
time, n
of con
hardw
Figure
severa
and Q
infrequ
branch
P* and

Total %

(>1%)

99%

92%

99%

98%

85%

99%

 Benchmarks

Wavelet image compression

EPIC encoding

UNEPIC decoding

Media Bench ADPCM

MPEG-2 encoder

Skipjack encryption

loops

25

132

62

3

165

6

loops

>1%

13

13

15

3

14

2

D

Table 1. Interesing loop detection for benchmarks.
hows the number of loops that contribute to more than 1%
total program execution time. The fourth column shows the
ontribution of these >1% loops. Table 1 suggests that, even
 the total number of loops in an application may be large,
 small number of these loops (2—15 in the examples)
ute to most of the applications’ execution time (90+%).
ore, if we focus on these few loops, we can expect the
tation cost for the algorithm to reduce significantly, yet still
e comparable quality of results because we are accelerating
f the significant loops of the program. Furthermore, even if
ps can be accelerated by the FPGA, any speedup for
ficant loops is usually negated by the configuration
ad.

Intra-Loop Selection
each hardware candidate loop can have multiple kernels
ted by compiler transformations, we apply intra-loop
on, to evaluate these multiple hardware versions, and select
t one that fits within the FPGA size constraint. This further

own the number of kernels to be considered in the next
inter-loop selection. The decision of whether to put a loop
dware or software can not be made until the inter-loop
on step. Therefore, along with the best hardware version, we
eep the original software version for further evaluation in
.
iterion for intra-loop selection is the total loop execution
ot including configuration time. This is because the number
figurations for a loop is not available until we know the
are/software partitioning result for all loops.
 4 illustrates intra-loop selection. A—D, P and Q represents
l points in the hardware design space for a loop. Kernels P
do not satisfy the hardware size constraint. We can trim off
ently executed branches in P and Q by keeping these
es in software to obtain the more compact implementations
 Q*. For all kernels within the area limit, the fastest one (in

FPGA area

elay

FPGA area0

A

B

C Q*
Q

D P*

P

Kernel that is too big

Kernel fits in FPGA

selected
Figure 4. Multiple hardware versions of a loop, in
the area and delay design space.

available

170

this case, kernel Q*) is selected.

4.4 Inter-Loop Selection
Inter-loop selection is the most critical step of the algorithm, as
the final partitioning decision has to be based on the global cost
function described in Section 3.3. Selections in previous steps
eliminate loops/kernels based on execution time metrics for each
individual loop, while in this step, we analyze the interaction
among all loops, and optimize execution time and configuration
time.
Even though the number of loops (say n) left after steps 1 and 2
may not be very large, the number of configuration possibilities is
exponential (2n). We introduce a clustering technique to partition
loops into small clusters to allow us to solve the partitioning
problem optimally for each cluster.

4.4.1 Hierarchical Loop Clustering Based on the
Loop-Procedure Hierarchy Graph
Clustering of loops is based on the loop-procedure hierarchy
graph (LPHG) which represents the procedure call and loop nest
relations in the application. Figure 5 shows the LPHG for the
wavelet image compression benchmark. A square node indicates a
procedure definition, and a circular node indicates a loop. Edges
into a procedure node represent calling instances to that
procedure. An edge from a procedure to a loop indicates the loop
is defined within the procedure. An edge from a loop a to another
loop b indicates that b is nested inside loop a. There may be
multiple incoming edges for a procedure, indicating multiple
calling instances of the same procedure. Recursive procedures
create cycles in the graph.
An LPHG captures loops and their relative positions in the
application and therefore provides a navigation tool for the
partitioning algorithm to traverse the loops. We define the shortest
distance from a node to the root node (main) as the level of that
node. We can make the following observations:
• If two loops have different first-level predecessors, they

appear in a disjoint part of the LEP trace and do not compete
for the FPGA configuration. For example, in Figure 5, all
entries of loop FW3 appear strictly before those of RLE2.
These loops can be partitioned into different clusters.

• Conversely, loops sharing common loop or procedure
predecessors tend to compete with each other, and therefore
should be placed in the same cluster. In the example, entries
of FW3 and FW4 interleave and hence compete for the
FPGA resource.

Based on the above observations, we have developed a
hierarchical loop clustering algorithm based on the LPHG.We
predefine a size limit for the loop clusters to ensure that the
clusters are small enough for feasible optimal selection. The loop
clustering algorithm traverses the loop-procedure hierarchy graph
in a top-down fashion and recursively clusters loops until the sizes
of all clusters are within the pre-defined limit. The algorithm
works as follows.
1. Starting from the first level of the loop-procedure hierarchy,

loops with a common predecessor at this level are clustered
together. In Figure 5, the unshaded loop nodes are discarded
after ILD. Clusters {R4}, {FW2, FW3, FW4, FW5, FW6,
FW7}, {Q3, Q6}, {RLE2, RLE3}, and {E4, E3} are
generated based on their level 1 predecessors.

2. If the size of any cluster exceeds the cluster size limit, we
need to traverse down a level in the hierarchy and refine the
clusters by grouping loops again with common predecessors

3.

4.4.
Afte
algo
each
exha
poss
one
To e
of re
achie
state
acco

5.
The
real
Nim
targe
fully
In o
our
optim
loop
algo
loop
once
We
abso
via
loop
rega
time

Main

I R FW Q RLE E W

I1 R1 R2 R3 R4 FW1 Q1 RLE1 E1 E4

FW2 FW5 RLE2 E2

FW3 FW4 FW6 FW7

BQ

Q2 Q4 Q5 RLE3 E3

Q3 Q6
I
R
FW
Q
BQ
RLE
E
W

I1

R

loop

procedure
loop cluster

initialization
read image
forward wavelet
quantization
blockquantization
run-length encoding
entropy encoding
write compressed file

level

1

2

3

4

5

Figure 5. Loop-procedure hierarchy graph for wavelet
image compression benchmark.
at the new level. For example, the FW loop cluster has six
loops. If we set the size limit at 5, we need to go down a
level, to level 2, and recompute the clusters. All the other
clusters are within the size limit and need no further
refinement.
Repeat step 2 until all loop clusters satisfy the cluster size
limit. In the example, at level 2, the FW loops still can not
be resolved into smaller clusters and it is necessary to go
down to level 3. The clustering result is shown in the figure,
{FW2, FW3, FW4} and {FW5, FW6, FW7}.

2 Optimal Selection in Loop Clusters
r the loops have been partitioned into smaller clusters, our
rithm performs optimal hardware/software partitioning for
 individual loop cluster. The approach adopted is to
ustively search the solution space of all partitioning
ibilities, evaluate each of these possibilities, and select the
with the best overall performance for all loops in the cluster.
valuate the overall performance, we must compute the number
configurations needed in each partitioning possibility. This is
ved by walking through the compressed loop entry trace. The

 of the configuration cache (if there is one) is taken into
unt to estimate the number of hits and misses.

Experimental Results
hardware/software partitioning algorithm has been applied on
benchmarks, as part of the Nimble compilation flow. The
ble flow takes off-the-shelf C code and compiles it onto a
t architecture of a combined CPU and FPGA. The flow is
 implemented and completely automated.
rder to show the result quality and computation efficiency of
partitioning algorithm, we compare it here with a local
ization algorithm that selects loops by evaluating individual

 cost, instead of the global cost function used by our
rithm. The local optimization uses a greedy approach: if a
 shows acceleration in the FPGA, assuming it is configured
, then it is put in hardware.
also compare the result quality of our algorithm with an
lute performance upper bound. The upper bound is obtained
the following method: For each loop (not limited to ILD
s), we use the performance of its best hardware kernel,
rdless of what size it is, to estimate its hardware execution
, and we make the idealizing assumption that only one

configu
and the
and con
This es
time fo
algorith
because
the bou
The be
compre
MPEG
benchm
among
and com
We exp
differen
single-c
array of
4-level
develop
4085 FP
Table
algorith
perform
the par
the lo
perform
algorith
local-op
hardwa

6. Co
We hav
that targ
a single
heuristi
or near
fully a
demons
We plan
of allow
introdu
to impr
closely
hardwa
should
perform

Benchmarks #loops
Performance
upper-bound

(cycles)

Our algorithm

CPU time
(sec)

Result performance
(cycles)

Local-optimal algorithm

CPU time
(sec)

Result performance
(cycles)

Wavelet compression

MPEG-2 encoder

MediaBench ADPCM

Unepic decoding

Skipjack encryption

25

165

16

62

6

0.17

1.92

0.08

1.53

0.04

 1.74e+5

7.47e+8

7.09e+4

8.57e+6

8.00e+4

0.05

0.49

0.04

0.28

0.01

1.74e+5

7.17e+8

7.00e+4

8.42e+6

8.00e+4

5.10e+5

1.58e+9

8.00e+4

1.47e+7

1.10e+5

.
Table 2. Results of our algorithm compared to a local-optimal algorithm and the absolute performance upper bound
171

ration is needed. The lesser of the software version time
 hardware version time (combined hardware execution time
figuration time) is used as the estimated time for that loop.
timate provides an absolute lower bound on the execution
r that loop. This bound is optimistic: even an optimal
m may not always achieve this performance upper bound
 of the single configuration assumption used in obtaining
nd.
nchmarks we have used include the wavelet image
ssion algorithm, an MPEG2 encoder and decoder from the
Simulation Group, the MediaBench ADPCM, the Unepic
ark from MIT, and the Skipjack encryption algorithm,
other smaller test programs. All are off-the-shelf C code
piler directly using the Nimble framework.
erimented with the partitioning algorithm targeting two
t platforms: GARP[6] and the ACEII card[13]. GARP is a
hip architecture with a MIPS 4000 CPU, a reconfigurable
 21 by 32 CLBs, on-chip data and instruction caches, and a
configuration cache. ACEII is a board-level platform
ed by TSI Telsys. It consists of a uSparc CPU and Xilinx
GAs. There is no configuration cache on the ACEII.

2 shows the experimental results of our partitioning
m on the GARP architecture. The table includes the
ance of the partitioned design and the CPU time spent in

titioning algorithm. These results are compared to that of
cal-optimal partitioning algorithm, and the absolute
ance upper bound. The results indicate that while our
m consumes comparable CPU time to that of a greedy
timal algorithm, it generates close-to-optimal

re/software partitions in all the benchmarks shown.

nclusions
e presented a hardware-software partitioning algorithm
ets dynamically reconfigurable architectures consisting of
 CPU and an FPGA co-processor. The algorithm applies
cs to achieve high computation efficiency yet finds optimal
 optimal solution in most cases. Using the algorithm in a
utomated framework on real off-the-shelf benchmarks
trate its effectiveness.
 to extend our work in the following directions: 1) instead
ing only one loop in hardware at any time, we consider

cing multiple kernels into the same hardware configuration
ove hardware utilization; 2) improve the algorithm by more

coupling compiler optimizations with the
re/software partitioning, e.g. the partitioning algorithm
provide directives on what are the best optimizations to
.

7. Acknowledgement
This work is partly sponsored by DARPA/AFRL under grant
F33615-98-2-1317. The authors would like to thank our
collaborators at Lockheed Martin ATL and UC Berkeley.

8. References
[1] T. J. Callahan and J. Wawrzynek, “Instruction level

parallelism for reconfigurable computing,” Proc. 8th Intl.
Workshop on Field-Programmable Logic and Applications,
Sept. 1998.

[2] B. Dave, G. Lakshminarayana, and N. Jha, “COSYN:
hardware-software co-synthesis of embedded systems,”
Proc. 34th Design Automation Conference, 1997.

[3] R. P. Dick and N. K. Jha, “Cords: hardware-software co-
synthesis of reconfigurable real-time distributed embedded
systems,” Proc. Intl. Conference on Computer-Aided Design,
1998.

[4] R. Ernst, J. Henkel, and T. Benner, “ Hardware-software
cosynthesis for microcontrollers,” IEEE Design and Test of
Computers, vol.10, no.4, pp.64-75, Dec. 1993.

[5] R. Gupta and G. De Micheli, “Hardware-software cosynthesis
for digital systems,” IEEE Design and Test of Computers,
vol.10, no.3, pp.29-41, Sept. 1993.

[6] J. R. Hauser and J. Wawrzynek, “Garp: A MIPS processor
with a reconfigurable coprocessor,” Proc. FCCM '97, 1997.

[7] A. Kalavade and E. A. Lee, “A global criticality/local phase
driven algorithm for the constrained hardware/software
partitioning problem,” Proc. International Workshop on
Hardware-software Co-design, pp. 42-48, 1994.

[8] M. Kaul et al., “An automated temporal partitioning and loop
fission approach for FPGA based reconfigurable synthesis of
DSP applications,” Proc. 36th Design Automation
Conference, 1999.

[9] Y. Li and W. Wolf, “Hardware/software co-synthesis with
memory hierarchies,” IEEE Transactions on CAD, vol. 18,
no.10, pp.1405-1417, Oct. 1999.

[10] S. Prakash and A. Parker, “SOS: synthesis of application-
specific heterogeneous multiprocessor systems,” Journal of
Parallel and Distributed Computing, vol.16, pp.338-351,
1992.

[11] W. Wolf. “Hardware/software co-design of embedded
systems,” Proceedings of the IEEE, July 1994.

[12] M. B. Gokhale and A. Marks. “Automatic synthesis of
parallel programs targeted to dynamically reconfigurable
logic arrays,” Proc. FPL, 1995.

[13] TSI Telsys, “ACE2 Card Manual”, 1998.

172

Appendix G. Xima - The Nimble Datapath Compiler

Abstract

In the context of the Nimble compiler, datapath portions of a C program are mapped on to an
FPGA. The goal of the datapath compiler is to efficiently map the unscheduled dataflow graph
description of the datapath to an FPGA. The involved steps include performing scheduling,
technology mapping, module generation, and datapath floorplanning. For the TSI-Telsys ACE
board with an ADM-XRC daughter card, that has been selected as prototype platform, the target
device is a Xilinx Virtex 1000. To leverage existing datapath compiler technology and to
quickly provide a prototype solution, the U.C. Berkeley work on the Garp architecture, in
particular, their datapath compiler tool Gama has been selected as starting framework. As
modified for the Xilinx architecture, the tool is called Xima.

1 Introduction

For a prototype environment for the Nimble Compiler, this project initially focused on providing
a compiler for the reconfigurable TSI-Telsys ACE II board. The board includes a MicroSparc,
two Xilinx XC4085XL devices, and dedicated SRAM and DRAM. The U.C. Berkely BRASS
group introduced a unique single chip architecture (Garp) containing a reconfigurable array and a
MIPS processor. The Garp compiler (garcc) was developed to provide an automatic path from a
C program to the Garp architecture. A part of the Garp compiler is the datapath compiler gama
which performs the module mapping, scheduling, and placement of the datapath portions of
programs to the reconfigurable array of the Garp architecture. A very restricted version, gamax,
providing limited technology mapping support for the Xilinx 4000 series FPGAs, was developed
in the initial phase of the project. This work leveraged much of the technology from the Garp
datapath compiler.

The current Xilinx datapath compiler known as Xima, further improved upon gamax by
providing full technology mapping for integer ANSI C and for some domain-specific functions,
with an extensible and isolated generator library. It also included target support for the Virtex
1000 series parts, on a ADM-XRC daughter card mounted on TSI-Telsys ACE I boards. Within
the context of the Nimble Compiler, the XC4085XL / ACE II combination is referred to as the
"ace" target, and the Virtex 1000 / ACE I combination is referred to as the "acev" target.

The input to xima is an unscheduled dataflow graph (in a format known as "AFL"), consisting of
processing nodes and data (or control) communication edges. The output consists of:

a. A ".ro" file, containing symbolic and other information on the datapath rows

173

b. A ".xnf" file, which is the datapath netlist

c. ".edn" files for each operator module required by the datapath

The following sections describe the xima datapath architecture framework, followed by a
description of the datapath compiler for it.

2 Datapath Architecture for Xilinx

The datapath implementation model selected for the Xilinx implementation has been derived
from the Garp architecture and the computation model used to implement datapath(s) on its
reconfigurable array.

2.1 Garp Features

The reconfigurable array of Garp is a two-dimensional array of small computing elements
interconnected by a network of wires. The following figure gives a high level view of the basic
architecture. For a more detailed description see ‘The Garp Architecture’ John Hauser.

Figure 1: The Garp Architecture

Each row / module can implement a 32 bit arithmetic function such as "add", "minus", "or",
"and". The output of each module is registered. One set of the extra logic blocks is used to
implement a sequencer for enabling the registers of the modules according to an execution

174

schedule. The control block is used to generate HALT, and predicate memory access control
signals. The memory buses allow for concurrent reading / writing to multiple modules. At this
time the software supports single read/write accesses with concurrent provision of the address.

2.2 Xilinx Features

The Xilinx XC4085XL device is a general purpose FPGA in the Xilinx XC4000 series. It shares
the same basic logic cell - 4 input lookup table - with the Garp architecture. The main difference
is in the cell arrangement and the interconnect. The Xilinx Virtex 1000 parts share enough
similarities to the XC4000 series parts to allow for use of a unified module generator library for
the two Xilinx target architectures. There are differences in the support logic between the 4085
and Virtex targets. This document focuses primarily on the later, since it is the more capable and
refined target.

175

2.3 Overall Architecture

Several of the Garp features have to be implemented on the FPGA using the general available
resources to achieve a similar timing predictability and to allow memory access functionality.
The following diagram is an illustration of the primary datapath features, with some possible row

operations and sequencer paths annotated:

Figure 2: Xilinx Datapath Overall Architecture

As shown in figure 2, the datapath consists of an interface and control wrapper, operator modules (add, delay, etc...),
and a sequencer. Each operator module also requires some control and glue logic.

2.3.1 The Wrapper

The wrapper provides a control and data interface between the host and the datapath as well as
support for straight SRAM access and cached DRAM access (although only the latter is used).

H o s t I n t e r f a c e

M e m I n t e r f a c e

D a t a p a t h

a d d (w i t h c o n s t)

d e l a y

c o m p _ n e

m u l t

a d d r

l o a d

b f a l s e

l o g i c a l

S
e

q
u

e
n

c
e

r

W
r

a
p

p
e

r

Datapath

SSRAM

SSRAM

SSRAM

SSRAM/
Cache

Local
Bus

Interface

Cache
Control
& Block RAM

Tags

SSRAM
InterfaceADDR_OUT

MEM_BUS

ADDR_IN

READ_BUS

DP
Control

HALT

MISS/
STALL

4 KW
Bank 0

4 KW
Bank 1

4 KW
Bank 2

4 KW
Bank 3

DRAM
Write
Queue

176

Figure 3 illustrates the main features of the wrapper:

Figure 3: The Datapath Wrapper

The host accesses the wrapper functionality through a memory-mapped interface. On the ADM-
XRC card for the Virtex target, the memory map is based at the "S0" memory space, which is
currently defined to be 31000000 (hex). Consult the ADM-XRC and PLX-9080 documentation
for details on memory map and capabilities.

2.3.1.1 The Wrapper's Host / Datapath Interface

The following table details the host access of datapath control and row registers:

Offset
(hex)

Read/Wri
te

Operation

404000 R/W Clear necessary datapath and wrapper
registers

404400 R/W Start the datapath sequencer at its initial
state

404800 R/W Stop the datapath sequencer

405000 W Write data to the row specified in bits 9-0

406000 R Read data from the row specified in bits 9-
0

Row data can actually be read from offset 405000h as well as 406000h, but this was not the
original definition. Rows correspond to address multiples of 4. So, row-0 would be read from
offset 406000h, and row 1 would be read from offset 406004h. A read of row 511 (offset
4067FCh) retrieves the exit status. The least significant bit which is high corresponds to the row
which triggered the exit. The datapath alerts the wrapper of an exit by driving the "halt" line
active low.

2.3.1.2 The Wrapper's Host / SRAM Interface Memory Map

The following table details the host access to the SRAM through the wrapper (offset from S0):

Offset
(hex)

Read/Wri
te

Operation

000000 R/W SRAM Bank 0 (cache in lower 4k words)

100000 R/W SRAM Bank 1

200000 R/W SRAM Bank 2

177

300000 R/W SRAM Bank 3

2.3.1.3 The Wrapper's Datapath / Memory Interface

The datapath can access the full SSRAM memory space, as well as the DRAM (through the
cache). The following table defines the memory map for the memory access as seen from the
datapath:

Address (hex) Read/Wri
te

Operation

0000000-0FFFFFF R/W DRAM Space (16 MB)

1000000-10FFFFF R/W SRAM Bank 0 (1 MB)

1100000-11FFFFF R/W SRAM Bank 1 (1 MB)

1200000-12FFFFF R/W SRAM Bank 2 (1 MB)

1300000-13FFFFF R/W SRAM Bank 3 (1 MB)

2.3.1.4 The Wrapper's Cache

The datapath's access to DRAM is provided using a write-though cache. The cache's tag bits are
located in Virtex Block SRAM and the data is maintained in external SRAM. The total cache
size is 4096 words. It is direct mapped, with 32 words loaded from DRAM on a load miss. The
wrapper stalls the datapath and starts the DRAM access as soon as the miss is detected, and
datapath operation resumes as soon as the final word of the 32 is received. Loads are performed
in pipeline fashion with one cycle per load when there is a cache hit. There is a pipeline latency
associated with loads, which is currently 5 cycles but could be reduced to 4 cycles. The five
cycles are:

1. Register on address output from datapath (this could be eliminated)

2. I/O register on the address output to SSRAM

3. Register of the ZBT flow-through SSRAM

4. I/O register on the data input to the FPGA from SSRAM

5. Register on the data input to the datapath (this is in the datapath, not in the wrapper)

Stores to the cache take one cycle for word (32-bit) stores and two cycles for short (16-bit) and
byte stores. The cache keeps track of valid data on a byte basis, which made it necessary to
perform a read-modify-write when storing bytes and shorts. It should be possible to modify the
logic so that short and byte stores are also one cycle. The cache is write-through with stores
placed in a queue for write-back to DRAM. The wrapper writes back the queued data to DRAM

178

whenever the queue is not empty. This queue for write-back to DRAM is implemented in Block
SRAM and is 256 words deep--a size choice that was driven by the Block SRAM dimensions.
The datapath is stalled on store only if this queue fills, otherwise, the datapath is not slowed by
stores. At the end of datapath activity the "halt" interrupt is delayed until any pending write-
backs are completed.

2.3.2 The Datapath

The datapath consists of "rows" (modules implementing operator functionality), a sequencer, and
control logic. The word "row" here, is a left-over from garp, since the actual module bit-wide
orientation is vertical on the Xilinx parts. The following figure illustrates the datapath
architecture:

Figure 4: Detailed Datapath Architecture

2.3.2.1 The Datapath Rows (Module Generators)

The module generators, written in a Java-based language called JHDL, build macros for the
Xilinx targets which perform sets of operations as mapped from the input AFL. After Xima has
determined the mapping and placement for the row modules, a placed macro is called out in the
datapath's top-level "xnf" netlist. The macro generation is invoked via command line, with the

Live VariableLive Variable

Sequencer Datapath
Predicate

3
3

ROW_#_WR_EN

ROW_#_ENABLE

ROW_#_BUS_EN

Multi-Cycle Read
Access Module

Multi-Cycle Read
Access Module

Datapath ModuleDatapath Module

1

2

2

3

4

5

Start Node

SEQ_PRE
(for start nodes)

SEQ_CLR
(non start nodes)

Sequencer Node

control
lines

HALT

L
O

A
D

E
N

A
B

L
E

ring mode for
loop computation

Parallel
Execution
of Modules

Parallel
Execution
of Modules

ROW_#_ENABLE

ROW_#_BUS_EN

ROW_#_WR_EN

LSB MSB

S
T

O
R

E
 E

N
A

B
L

E

SEQ_CLK

SEQ_ENABLE
(for cache miss)

To Wrapper

4

D
P

_
B

Y
T

E

D
P

_S
H

O
R

T

From Wrapper

Row
Connect

and
Memory

Bus

179

proper parameters (sign, bit-width, etc...), resulting in an EDIF netlist placed in a directory
named "Cells" under the current design directory. For detailed information on the module
generators, consult the Specification for FPGA Macro Generators for the Nimble Compiler. The
modules have defined input, output, and control interfaces to make interconnection simpler for
Xima as shown in figure 4.

Figure 5: Common Module Interface

Xima defines some additional common circuitry and signaling around the module generators,
which includes the memory interface and host access signals.

Data "flow" for a given operator module is from left to right (top to bottom in the Garp "row"
way of thinking), although modules may take input from any location. It is the job of the
floorplanning and placement to minimize the distances between module connections.

2.3.2.2 The Datapath Sequencer

The datapath sequencer triggers operator modules according to a precomputed schedule. The
sequencer can be started, paused (for cache miss), and stopped by the wrapper (see section
2.3.1). Modules, once fired, may issue signals to the wrapper, which control sequence halting
and interrupt generation, memory access, and data size/alignment. The sequencer is built of
subtree sequencers which run in parallel.

2.3.2.3 Datapath Memory Subsystem Architecture

One major difference between the Garp architecture and the Xilinx targets is the available bus
resources. While the Garp architecture provides multiple dedicated memory and address buses
per logic block, the Virtex and XC4085 have limited tristate resources, restricting the memory
bus architecture. The datapath for the Virtex target has separate data write (MEM_BUS), data
read (READ_BUS), and address (ADDR_BUS) signaling, to avoid contention for these
resources. Memory reads and writes are broken up into separate address and data phases. This
increases required area and schedule allotment, but allows the address and data to be placed
closer to the rows which feed and/or use them. A write data, read data, and read or write address

A[n] (in)
B[n] (in)
D[n] (in)
E[n] (in)
CLR (clear)
C (clock)
CE (enable)

Out[n]

CTRL
(opt)

180

can all be scheduled for on the same clock cycle. Since the READ_BUS is only has one driver,
it is not a tristate bus. The ADDR_BUS and MEM_BUS are tristate, since multiple rows may
issue address or write data. The active-low memory control signals consist of:

DP_BYTE Indicates byte data access

DP_SHORT Indicates short data access

LOAD_ENABLE Indicates start of load address

STORE_ENABLE Indicates start of store address

If no memory accesses are used, the four memory control lines are always high.

2.3.2.3.1 Memory Write

A memory write begins with the datapath driving the tristate STORE_ENABLE signal low for
one clock cycle. This is done by tying the enable of the tristate driver to the inversion of the
clock enable (ENABLE_ROW_#) signal of the corresponding address row, and grounding the
input. For a predicated write, the output from the corresponding condition row is included, so
the STORE_ENABLE is never generated if the predicate condition is not satisfied. On the
second clock cycle of the write, the address is driven onto the MEM_ADDR_BUS. This is done
by including the enable of the nearest successor in the product terms for the address row's
TENABLE_ROW_# signal. Also during this cycle, the DP_BYTE or DP_SHORT signal may
be asserted, depending on the data size. On the third clock, the write data is driven, with the
TENABLE_ROW_# signal derived from the closest successor to the write data row.

2.3.2.3.2 Memory Read

A memory read begins with the (possibly predicated) LOAD_ENABLE signal going low for one
cycle. On the second cycle, the address is driven onto the MEM_ADDR_BUS, and DP_BYTE
or DP_SHORT may be asserted. Cycles three through five are fill (and can be additional
read/write addresses and data, and on cycle six, the enable signal (ENABLE_ROW_#) is driven
active high for the load data row, completing the access.

3 Xilinx Datapath Compiler (Xima)

The datapath compiler for the Xilinx targets has to perform the scheduling of the computational
tasks, the technology mapping and module generation, the floorplanning, and the control logic
and sequencer generation. It reads in a data flow graph file in a human-readable format known
as "AFL", and outputs a ".ro" row description file, an ".xnf" netlist of the datapath, and ".edn"
EDIF netlists of the generator modules. To utilize existing technology, the Berkeley gama tool
has been selected as development platform. The following sections elaborate the additions and
changes to the base algorithms that have been made to perform the mapping to Xilinx
XC4085XL and Virtex 1000 devices rather than the Garp architecture.

181

 The following is the command-line usage of xima:
usage: xima <options> input{.afl}

The following are the command-line arguments available for xima:

debug options:
 -v: verbose output
 -c: show cover (shows the process of grammatically processing AFL nodes)
 -d: turn on yydebug (internal debug use)
 -x: keep going even if no cover
output options:
 -g: .ga output (garp only)
 -G: .ga output with control! (garp only)
 -8: 8-bit wide datapath (default 32) (deprecated)
postpass optimization options:
 -M: module reordering
 -E: Eigenvector-based module reordering
 -C: do compression optimization
prelabel and labeling options:
 -L: tree layout reordering
 -r: modifies -L for better routability
 -s <size>: size cutoff for replication
 -m: no reuse (minimize delay)
 -a: cost function: minimize area
 -S: super-auto-dynamic cost function! (for experimental use)
 -f <dist>: assume rows <dist> or more rows apart need long wire
 -F: inhibit adjacent tree matches
 -W [weight]: cost function: weighted
 "I'd rather have <weight> more rows than
 an extra cycle of delay (default 8)"
near-obsolete options:
 -w: write modified .afl file
 -r: dump routing postscript
 -p: optimize for pseudo-constants
 -e: do pre-estimate and reorder trees
 -D: like -e, plus dynamic cost fn

In most cases, calling xima on an AFL file with no options suffices. Using the "-v" and "-c"
options are useful when doing an in-depth analysis of xima operation.

3.1 Flow Graph Input Parse and Translate

The initial task which xima performs is to parse the AFL file into an internal node-based
representation. This is done in two steps.

3.1.1 Initial AFL Read

 In the first parsing step, the function "GraphInputWithInit()" from the "flowLib" library is used
to read the AFL into a flow-graph structure with nodes and edges, a data structure which
similarly represents the data from the input file.

3.1.2 Flow Graph Translation

The second parsing step, the function "translate_flowgraph()" in the file "input.c" translates the
data from "flowLib" into the internal node-based representation. The nodes facilitate the
building of data-flow subtrees, each having an array of children (kids[]) indicating data
operations whose results feed into the current node. The function which performs the bulk of the
computation in this step is "translate_node()" in "input.c". The translation performs child

182

determination, attribute initialization, and operation code assignment. Nodes of type "load" and
"store" are split into separate nodes for address and data phases, and special handling is provided
for certain nodes, including queue operations, delays, and inputs.

3.2 Tree Collection

After the flow graph data has been parsed into the internal node representation, a series of
preprocessing steps is performed on the data, the goal of which is to make it possible for
grammatical tree coverage. The first step (prepass_all_nodes() in "input.c")removes unnecessary
nodes, initializes successors, annotates control information, places nodes in topological order,
and marks live variable information. The second step (find_trees(),unshare_and_fix_trees(), and
reorder_trees() in "input.c") determines the separable trees in the data-flow, organizes them, and
estimates initial schedule parameters.

3.3 Mapping, Scheduling and Placement

Mapping, Scheduling, and Placement all take place concurrently (in maptrees() of "node.c"),
since the modules chosen during mapping affect the time allocations in the schedule. For the
technology mapping of the dataflow graph to module primitives, the grammar package
developed with tburg in gamax has been reused. The grammar (contained in the file
"xgrammar.m4") defines how operations of a subtree map to generator modules. The goal of the
grammatical approach is to cover as many operations in as few clock cycles and as little area as
possible, and to minimize inter-row connection delays. The amount of time and area (rows) each
module takes is computed in the file "cost.c"

The basic ASAP scheduling applied in gama still applies to the datapath architecture
implementation for the Xilinx targets. However, the schedule allotments imposed by the different
memory and bus architecture and the different module and wire timing have to be taken into
account:

• address of memory write access one clock before data

• address of memory read access four clocks before expected data return

Due to the separate address, read data, and write data busses, the only constraint on memory
access is that a single address may be scheduled to drive the address bus at any given time slot.
Cycle-by-cycle accesses of same or different types are allowed and handled properly by the
wrapper. Only one exit row is allowed to fire per time slot. The ASAP value for a multi-cycle
module indicates the cycle on which the module has completed. This usually corresponds to the
cycle on which the enable of the module's output register should be active. Memory address
rows are handled specially, in that the address row is always enabled on the first clock cycle, and
the ASAP (derived from the row's op_delay field) is used merely to push the dependent data
phase into the correct cycle.

3.4 Control Information Annotation

183

Before netlist generation can proceed, control information must be gathered for the proper
sequencing of the datapath. This is done in the function xiAddControlInfo() of the file
"xi_control.c". Control annotation is slightly complicated by pipelining, which allows rows to
have both a lag and an ASAP. The lag is a delay measured in terms of loop iterations, and the
ASAP is a cycle offset from this lag boundary. First, the bottom exit and an input row are found.
Then, the bottom exit is moved to the last clock cycle, and all the delays are moved to the last
cycle of their pipeline segment. Lastly, each module is annotated with its closest successor and
predecessor modules for later use by sequencer generation layout.

3.5 Module Generation

Once all of the modules, positions, and schedule have been determined, the steps to build the
target netlist begin. After an initial prolog is generated, for each module, control logic and the
module itself are emitted.

3.5.1 Proglog Generation

The first generation step is prolog information, which is common in every netlist generated by
Xima. The prolog first includes some directive information, and some informational comments.
Next, the following global signals are set up:

Control Inputs From Wrapper

• DP_FF_CLR Clears the host-access row decode registers

• SEQ_CLK The sequencer clock

• DP_CLK The clock to the datapath's row registers

• CLK_EN Clock enable for stalling datapath during cache misses

• SEQ_PRE Sets the bits for rows scheduled on cycle 1

• SEQ_CLR Clears other sequencer bits

• SEQ_ENABLE Clock enable for the sequencer

• ROW_WRITE_ENABLEEnables data to be written into a row/module

• ROW_OUTPUT_ENABLE Enables rows to activate tristate output driver

• IO_OPERATION Indicates a host I/O operation

• IO_ADDRESS_BIT(7:0) Row address for host access

• EXIT_IDENTIFY Row causing exit drives bit onto MEM_BUS

184

Memory Interface

• MEM_BUS_BIT(31:0) Tristate write-data bus

• READ_BUS_BIT(31:0) Read data bus, fanned out to all load rows

• ADDR_BUS_BIT(31:0) Tristate address bus for both reads and writes

• DP_BYTE Datapath informs wrapper that this is byte access

• DP_SHORT Datapath informs wrapper that this is short access

• LOAD_ENABLE Issued before load address is driven

• STORE_ENABLE Issued before store address is driven

• DATA_VALID Not used

Miscellaneous

• Halt Datapath informs wrapper that loop has terminated

In addition, the prolog instantiates some pullups and glue logic.

3.5.2 Control Logic for Each Module

The control logic for modules consists of a sequencer segment, host I/O access logic, and
possible memory or halt control.

3.5.2.1 Sequencer

The sequencer segment for a row drives the ENABLE_ROW_# signal high (where "#" indicate row number) during
the scheduled clock cycle. Provisions are made to prevent rows scheduled on the first clock cycle from firing after a
halt. The information annotated in xiAddControlInfo() (see section 3.4) is used to place the proper number of
sequencer bits to delay the row's execution from it's nearest temporal and spatial companion. A shift register chain
is used to implement the sequencer. Typically, a row's "onehot_source" is used to feed the input to the sequencer
chain, and the row's "onehot_delay" defines how many sequencer bits to place in the chain for a particular module.
The exception is for rows which fire on cycle offset 1, marked by a "onehot_delay" value of -1. The sequencer bits
for these rows are preset (high) during datapath initialization, and they receive a "loop-back" from a sequencer bit
scheduled at the end of the iteration interval.

3.5.2.2 Host I/O Access

The host I/O access is provided for initially setting the values of the live variables, and for reading out the live
variables after the loop has completed. In addition, the ability to read or write to any row except memory access
rows is useful when debugging. Memory access rows are not readable by the host since their tristate output is
connected to ADDR_BUS, as opposed to MEM_BUS. Host access is decoded on the IO_ADDRESS bus, taken
from bits 9-2 of the local bus, providing logical room for up to 256 separate rows. Due to physical arrangement,
decode access is currently limited to 92 sites. This does not confine the datapath to 92 operators, however, since
grammar is used to pack multiple operators into single modules. Multi-row modules will pack nicely, using all
available "slices". A design with many single-row modules will leave slices unoccupied. This is due to the

185

availability of tristate access resources in a given row. In order to allow write access to live variables, delay rows
are actually multiplexors, accepting input either from the MEM_BUS or from another datapath row.

3.5.2.3 Memory and Halt Control

Logic is provided so that the tristate control lines are driven at the proper times. The following row types require
this additional control logic:

• Exit Drives the HALT signal when condition is satisfied

• Pmem Condition from predicate is used to mask load/store enables

• Mem Drives LOAD_ENABLE or STORE_ENABLE

• Load Drives DP_BYTE or DP_SHORT when address is driven

• Store Drives DP_BYTE or DP_SHORT when address is driven

3.5.3 Module Generation

Currently, emit_xi_row() in the file "xi.c" emits tristate buffers in ".xnf" format for each module
requiring them and determines inputs and control for each module type. Following this, the
routine emit_xi_gen() in "xi.c" makes calls the appropriate generator with the necessary
parameters (signed/unsigned, bitwidth, etc...) via command-line interface. Special handling is
provided to determine control and data inputs to the generator modules. Data inputs may be
paths (tree segments) which contain shifting and other masking type operations which may be
implemented by routing in the FPGA. The grammar and the function emit_xi_input_pin() in
"xi.c" collaborate to produce the module interconnect.

The following module generators are currently implemented for datapath width up to 32 bits:

add Binary Adder (+)

comp Compare function (<, <=, >, >=, ==, !=)

div Binary Divider (/)

logic Up to 4-input logic specified by table (&, |, ~, ^, &&, ||, !, ^^, ?)

mul Multiplier (*)

mux Two-to-one registered multiplexor (live variables)

neg Negate unary operator (-)

reg Register (for memory address, load, store, inputs, patches)

rem Remainder (%)

shift Shifter with variable shift count (<<, >>)

sub Subtractor (-)

abs Fixed point absolute value: (a>0) ? a : -a

186

bytesel Friendly endian byte select: a >> ((3-byte&3)*8)&255

fir FIR filter

parcnt A 32-bit counter which skips over parity (LSb) bits of each byte

permute General bit permute, set, and clear

ram CLB-based RAM (not in external memory)

rom CLB-based ROM

sbox The DES sbox computation with “P” permute

sjg The skipjack “G” function

3.5.4 Domain Generators

One of the easiest and rewarding extensions to Xima is to implement additional domain specific
operators or blocks, which can be called out from "C". You simply create a circuit using
Java/JHDL, integrate it with Xima, and then reference is as a function call with the "nimble_"
prefix. See the Nimble Compiler Domain Generator Tutorial for information on incorporating
and taking advantage of this powerful feature.

187

4 Summary

The Xima datapath compiler for Nimble has been described, including its derivation from Gama
(Garp mapper), through its interim implementation supporting the Xilinx 4000 series as
instantiated on the ACE 2 platform (gamax), to its final, delivered form (Xima) supporting the
ACE-V (ACE board with ADM-XRC daughter card) platform. Important concepts relating the
general method that Nimble employs to map code to reconfigurable hardware and provide
necessary interfacing have been described. These include the construction of the datapath, the
functionality implemented in the wrapper, the control approach used for the sequencer, and the
general operation of the memory subsystem. Finally, the methods used to convert the data flow
graph (AFL file) provided by the Nimble front end through a series of processes, resulting in a
placed and annotated .xnf file used as input to the Xilinx tool for routing, optimization and bitfile
generation, are described.

5 References
[1] Timothy J. Callahan and John Wawrzynek, Instruction Level Parallelism for Reconfigurable

Computing, FPL'98, Tallinn, Estonia, September 1998.
http://brass.cs.berkeley.edu/documents/fpl98.html

[2] John R. Hauser, The Garp Architecture
http://brass.cs.berkeley.edu/documents/GarpArchitecture.html

[3] Randy Harr: A Nimble Compiler Environment for Agile Hardware,l DARPA ACS PI
Meeting, Oct 2000, http://www.dyncorp-
is.com/darpa/registration/agenda.asp?regCode=acs00oct

[4] Virtex 2.5V FPGAs (XCV00), http://www.xilinx.com/partinfo/ds003.pdf
[5] Alphadata Parallel Systems Ltd, ADM-XRC, Xilinx Reconfigurable Computing PMC Card,

http://www.alphadata.co.uk/dsheet/adm-xrc.html
[6] TSI Telsys ACE Documentation – Installed on delivered nimblex machine in directory:

/disks/local/ace/doc/manuals
[7] PLX PCI-9080 Data Book - http://www.plxtech.com/products/toolbox/9080.htm

188

Appendix H. Domain Generator Tutorial for the Nimble
Compiler Project

1 Introduction

This tutorial documents the process of creating a new domain generator, integrating it, and using
it within the Nimble Compiler framework. The ability to create and add custom domain
generators to the Nimble Compiler allows the user provides a quick way to develop a digital
circuit and then test its functionality by calling it out in a C program. Especially critical portions
of a program can be custom implemented in hardware, and then simply invoked by a function
call. The convention for function name is to append "nimble_" to the beginning of the generator
name.

1.1 Background

For creating and integrating new domain generators, it is helpful to be generally familiar with the
C and Java programming languages. Also, knowledge of Xilinx FPGAs (Virtex) and tools is
required. The generators are written in JHDL, a Java-based description language for structural
composition of the operators, so it might be necessary to review the JHDL tutorials and reference
material available from "http://www.jhdl.org". It is, however, possible to write a domain
generator in any language, as long as it conforms to the physical and calling interface standards
which are detailed in this document.

1.2 Development Environment

JDK version 1.1.8 must be installed and referenced by the environment (system path,
CLASSPATH, etc…). JDK 1.1.7 has also been tested. JDK 1.2 should work with little effort,
but has not been tested. The JHDL toolkit must also be installed and referenced by the
CLASSPATH environment variable. The generator library has been compiled with JHDL
version 0.2.16, but has been tested with earlier and later versions. The required JHDL ships with
the Nimble distribution. For simple unary domain operators, this is all that is required. For more
complicated domain ops (unary with constant parameters, or binary), it will be necessary to
modify Xima source code, so a C compiler is required. Finally, a recent (2.1i or later) version of
the Xilinx tools is required.

1.3 Integration

The integration of a general domain op with the Nimble compiler is currently not an exact
science. There are a couple of options available which make the integration process definable
within the context of this tutorial. The focus is placed on the simpler unary and binary operators,
and hopefully provides a good starting point for further investigation.

189

2 Developing the Generator

Currently, the generator must have a cell interface which is predefined, because the back end
compiler simply calls out generator macros heuristically. The following table summarizes the
cell interface which must be defined in the generator source code:

Pin Name Dir Description

a in The first operand input. The only operand input for unary ops.

b in The second operand input.

out out Output from the module.

ce in Clock enable for synchronous control.

In addition, a pin "clk" will be on the physical interface in the netlist. It is automatically inserted
by JHDL, and does not need to be defined in the cell interface. The above list shows the signals
required for the special domain generators. For the more general operator, there are a few more
signals which could potentially be used (start, done, ci, co, etc…), but these are not considered in
this tutorial.

2.1 The Java Source Files

There typically two java source files which go with each generator. The first serves as a JHDL
"testbench", and the second is the actual circuit definition. The Java source files which comprise
the module generators for the Nimble Compiler can be found in the $NIMBLE_ENV/acesyn/gen
directory.

2.1.1 The Testbench File

The top level, or "testbench" file inherits from the GenLogic class which simplifies command-
line processing, simulation, and netlisting. This file also instantiates the actual instance of the
underlying circuit, as specified by the command-line parameters. The following is an example of
the "testbench" file for the "abs" absolute value domain generator in the file named "abs.java":

/**
 * Absolute value generator top level
 * @see abs_inst
 * @author JCR
 * @see copyright.java
 */
package gen;
import byucc.jhdl.base.*;
import byucc.jhdl.Logic.*;
import gen.tech;

/**
 * Absolute value module generator

190

 */
public class abs extends GenLogic implements TestBench {
 public static void main(String argv[]) {
 inputs=1;
 initialize("abs",argv);
 abs top = new abs(hw);
 finish();
 }

 public abs(Node parent) {
 super(parent);
 cell = new abs_inst(this, a, ce, out, cout ? co : null, reg, name);
 }
}

2.1.1.1 The Testbench "main" Routine

The following steps are taken in "main":

A. The assignment "inputs=1" is used to alter the number of inputs from its default value of two.

B. The call to "initialize" processes command line parameters and sets up netlisting and
simulation.

C. The "abs" class is instantiated.

2.1.1.2 The Testbench Constructor

The testbench cunstructor simply calls super(parent) which constructs the superclass testbench,
and then instantiates the cell, with a call to the abs_inst class constructor. Note that there are
provisions for an optional carry-out port in this call. In this case, abs_inst will include a carry-
out port if cout is true.

2.1.2 The Instance File

The instance file defines the cell interface and creates the logic contained in the module. An
example of the instance for the absolute value generator, named "abs_inst" follows:

/**
 * Absolute value instance
 * @author JCR
 * @see copyright.java
 */
package gen;
import byucc.jhdl.base.*;
import byucc.jhdl.Logic.*;

public class abs_inst extends Logic {
 public static CellInterface[] cell_interface = {
 in("a", "width"),
 out("out", "width"),
 in("ce",1),
 in("en",1),
 out("co",1),
 param("width", INTEGER)

191

 };
 public String name = "abs_cell";
 public String getCellName() { return(name); }
 public static int num_inst = 1;

/**
 * Absolute value
 * @param parent The parent node
 * @param a The "A" input
 * @param ce The clock enable
 * @param out The output
 * @param co Optional carry out
 * @param reg Flag indicating registering on output
 * @param name_in The name for the cell
 */
 public abs_inst(Node parent, Wire a, Wire ce,

 Wire out, Wire co, boolean reg, String name_in) {
 super(parent);
 boolean virtex = ((GenLogic)parent).part.equalsIgnoreCase("Virtex");

 // Get the width of Wire a so that the input ports a, b & out can be sized
 int width = a.getWidth();
 bind("width", width);

 // Update the cell name
 name = (name_in != null && name_in != "") ? name_in : name +"_"+num_inst++;

 // Connect the ports to output wires
 connect("a", a);
 connect("ce", ce);
 connect("out", out);
 if(co != null) { connect("co", co); }
 Wire out_nr = wire(width,"out_nr");
 Wire co_nr = wire(1,"co_nr");
 Wire zeros = wire(width,"zeros");
 Wire sign = a.getWire(width-1);
 for (int i=0; i<width; i++) gnd_o(zeros.getWire(i));
 addsub_o(zeros,a,sign,not(sign),out_nr,co_nr,"abs_jhdl");
 place(out_nr.getWire(0),0,(virtex ? 0:-1));

 if(reg) {
 regce_o(out_nr,ce,out, "abs_reg");
 if(co != null) regce_o(co_nr,ce,co,"abs_co_reg");
 for (int i=0; i<width; i++) place(out.gw(i) ,0,width/2-1-i/2);
 }
 else {
 buf_o(out_nr, out);
 if (co != null) buf_o(co_nr, co);
 }
 }
}

2.1.2.1 The Instance Cell Interface

The cell interface, specified in the array of type CellInterface, defines the module ports which
will appear in the resulting netlist. Even though it is not included in the cell interface a "CLK"
port will also be included by JHDL. Typically, a cell interface will have an "a" input, possibly a
"b" input, a "ce" clock enable input, and an "out" output. Also included in the cell interface is
the "width" parameter, because it affects the width of the "a" and "out" ports. The "co" port is a
carry output, and the "en" port is an unused port which is reserved for tristate enabling (even
though this is not currently implemented in the generators).

192

2.1.2.2 Miscellaneous Declarations

The following three lines set up some general information required by the generator:

public String name = "abs_cell";
public String getCellName() { return(name); }
public static int num_inst = 1;

The name is used as the instance name, and is modidified if there is more than one instance used.

2.1.2.3 The Constructor

The constructor for abs_inst first invokes the superclass constructor, and then performs cell
interface initialization. This includes binding the "width" parameter, and connecting the ports.
Next, needed wires are created and the JHDL primitives are hooked up. In this case, we use
JHDL's addsub module. The first input to the addsub module is connected to all grounds, and
the second input is connected to the "A" input of the absolute value generator. The add/sub
control is connected to the inversion of the input's sign bit. Optionally, a register is connected to
the output, and some placement directives are provided.

2.1.3 Final Steps for the Generator

Once coding is complete, the generator files must be compiled, using "javac" on the command
line. Simply typing: "javac abs.java" would compile both the testbench and the instance file.
Once any errors are corrected, you can simulate the file using the following command line:

java gen.abs netlist=0 sim=1

The GenLogic.java file contains some default handling for simulation, so you should get some
usefule results. For more custom simulation, you will have to overload the clock(), reset(), and
other such methods. Examples of overloading the simulation methods can be found in more
complicated generators such as "div.java".

Once simulation has verified functional operation, you will need to test the command line
operation of the generator and verify its relative placement. To do this, in the case of the abs
generator, type:

java gen.abs part=virtex pads=1

This will produce a netlist of the generator targetted toward the virtex part, and pads will be
inserted so that when it is sent through place and route, the entire circuit won't be optimized
away by the tools. Once this is completed successfully, type the following commands to put the
netlist through place and route:

ngdbuild -p xcv1000-4-bg560 abs_32_s

map -p xcv1000-4-bg560 abs_32_s

par abs_32_s -w abs_32_s_routed

You can then analyze the design in fpga_editor (type "fpga_editor abs_32_s_routed.ncd") to
ensure proper construction and placement.

193

3 Integrating the Generator to Xima

Adding more complicated generators is not an exact science, and requires extensive
modifications to obscure portions of the Xima source code. This section describes the process of
adding simple generators for which most of the infrastructure is already in place. These include
binary operators, unary operators, and unary operators with a second constant parameter (such as
permute with a permute table, or rom with rom contents).

For the special case of a unary operator with no parameters (like our "abs" example), there is no
need to integrate the generator with Xima. It can be used immediately in Nimble programs, by
defining a constant integer array whose elements contain the ASCII values for the generator
name, like:

const int ABS[4] = {'a', 'b', 's',0};

The generator may then be referenced in a loop as follows:

 a=0;

for (i=0, i<16; i++) { /* ks: yes */

 a += nimble_unary(i, ABS);

}

When implementing a generator for a binary operator, or a unary generator which is configured
by constant parameters (like a ROM), it is currently required to modify Xima source code as
described in the following text. Note that this requires that the Xima source code be available.
Also note that the interface for adding such generators to Xima is currently unrefined.

3.1 Adding to "opcodes.h"

In the file "opcodes.h", you must add the opcode to the if_ops enumeration. For our example
"abs" generator, you would add "io_abs" to the enumeration (but don't do this, since it's already
there).

3.2 Modifications to "opcodes.c"

 In the file "opcodes.c", you must add the opcode to the if_op_names[] array and to the
afl_op_names[] array. In our example, we would add "nimble_abs" to the two (again, this is
already in place). In the op_family[] array, a "fam_other" entry must be added in the position
corresponding to the added opcode.

Next, if adding a unary operator, you will need to add another term to the is_nimble1() function.
If adding a binary operator, add the corresponding term in the is_nimble2() function. For the
"abs" example, the term o==io_abs is already in the equation in is_nimble1().

3.3 Modifications to "cost.c"

194

If the new operator only takes one clock cycle and one row, no modifications are needed to
"cost.c". Otherwise, code must be added to the xil_nimble1() or xil_nimble2() function for
unary or binary operators, respectively. Following the example of the multi-cycle or multi-row
opcodes that are currently present is the easiest way to add new cost functionality.

4 Using the New Domain Generator

After creating the generator, testing it, and integrating it with Xima, the generator may be used in
a "C" program and the Nimble Compiler. The generator is referenced in the "C" source by
prefixing the generator name with "nimble_". So in the case of the abs generator, we would
simply make a call to nimble_abs(). You must also provide an equivalent function of the same
name, so that the software-only target will function. The following example illustrates a simple
program which uses the "abs" generator:

/*
 abs test
*/
#include <stdio.h>

int nimble_abs(int i) { return(i<0 ? -i : i); }

int main(int argc, char *argv[])
{
 int i,j;

 j = 0;
 for (i=-8; i<2; i++) { /* ks:yes */
 j += nimble_abs(i);
 }
 printf("j=% \n",j);
}

195

Appendix I. Specification for FPGA Macro Generators for
the Nimble Compiler Project

1 Introduction

These macro generator libraries were developed to support the full set of ANSI C integer
operators. In addition, an initial set of domain specific generators are provided to facilitate
acceleration of cryptographic and general computational functions. Additional API
documentation is provided with the generator distribution.

1.1 Generator List and Operator Coverage

1.1.1 Generators Supporting Intrinsic Operators

add Binary Adder (+)

comp Compare function (<, <=, >, >=, ==, !=)

div Binary Divider (/)

logic Up to 4-input logic specified by table (&, |, ~, ^, &&, ||, !, ^^, ?)

mul Multiplier (*)

mux Two-to-one registered multiplexor (live variables)

neg Negate unary operator (-)

reg Register (for memory address, load, store, inputs, patches)

rem Remainder (%)

shift Shifter with variable shift count (<<, >>)

sub Subtractor (-)

1.1.2 Generators Supporting Domain Specific Functions

abs Fixed point absolute value: (a>0) ? a : -a

bytesel Friendly endian byte select: a >> ((3-byte&3)*8)&255

fir FIR filter

parcnt A 32-bit counter which skips over parity (LSb) bits of each byte

permute General bit permute, set, and clear

ram CLB-based RAM (not in external memory)

rom CLB-based ROM

sbox The DES sbox computation with “P” permute
sjg The skipjack “G” function

196

1.2 Intrinsic Operator to Generator Mapping

1.2.1 Arithmetic
Op Description Generator
+ Unary plus none
- Unary minus neg
++ Unary increment add
— Unary decrement sub
+ Binary add add
- Binary subtract sub
* Binary multiply mul
/ Binary division div
% Binary modulus rem

1.2.2 Relational
Op Description Generator
== Binary Equal comp type=e
!= Binary Not equal comp

type=ne
> Binary Greater than comp type=g
< Binary Less than comp type=l
>= Binary Greater than or equal comp

type=ge
<= Binary Less than or equal comp

type=le

1.2.3 Bitwise
Op Description Generator
~ Unary complement (invert) logic
& Binary And logic
| Binary Or logic
^ Binary Xor logic
<< Binary Left shift logic
>> Binary Right shift logic
>>> Binary Right shift with zero

fill
logic

1.2.4 Logical
Op Description Generator
! Unary not logic
&& Binary and logic
|| Binary or logic

197

^^ Binary xor logic

1.2.5 Control Flow
Op Description Generator
? ternary operator logic

1.3 Invoking the Generators from the Command Line

The generators have a simple calling interface, which is introduced with the following example:

 java gen.comp name=testcomp type=e sign=0 reg=1 width=16 sim=1
part=virtex

The preceding line will produce an "equals" compare function which is unsigned (irrelevant),
registered, 16-bits wide, and targeted toward a Virtex part. Note that there are no spaces within a
given parameter assignment. In this case, an EDIF netlist of the cell "testcomp" would be
generated in a file named "testcomp.edn".

In general, parameters all have sensible default values, so one could just enter the following and
still get valid results (a netlisting of a registered 32-bit equals comparitor named
"comp_32_e_s"):

 java gen.comp

 The following parameter assignments are common to all generators:

Parameter default effect
Width=n 32 bitwidth of the generator
reg=0|1 1 turns output registering on/off
Sign=0|1 1 invokes unsigned/signed version of

generator
Netlist=0|1 1 turns netlisting on/off
Pads=0|1 0 turns on insertion of pads for lone P&R
sim=0|1 0 turns simulation on/off
Part=virtex|XC400
0

XC4000 chooses the target part

Name=string auto sets the name of the cell and netlist
file

Disp=dec|hex|bin hex sets the display format for simulation
output

Verbose=0|1 0 Prints out useful info to stdout

The word "true" can usually be substituted for "1", and "false" for "0" above.

Some parameters have special meanings for specific generators:

198

Generator parameter default meaning
Comp type=e|ne|l|le|g

|ge
e type of comparitor

Logic logic=n 6 (xor) Decimal int for logic table
(LUT)

Logic inputs=n 2 Number of inputs
Mul stages=n 1 Number of multiplier stages per

clock
Permute table=n,n,n,... -2,-

2,...
In bit wired to out. -1=VCC -
2=GND

Rom init=n,n,n,... 0,0,... Contents of ROM
Shift type=l|r l Direction of shift

1.4 Generator Cell Interface

Invoking the generators from the command line results in an EDIF netlist for the module, if
netlisting is not specifically disabled. The module's cell interface follows a convention which is
common across all generators, unless otherwise noted. This makes it easy for a higher level
application to instantiate and connect the modules. The standard cell interface is as follows:

Name Dir Description

a,b,d,e in Up to four main inputs to the module

Ctrl in A control input (for variable shift and mux only)

Out out Output from the module

Clk in Clock input providing for pipelined operation

Ce in Clock enable for synchronous control

Start in A pulse which begins operation of synchronous modules

Done out A pulse indicating module completion (output is valid)

Ci in Optional carry input for adder-type modules

Co out Optional carry output for adder-type modules

Unary operator modules, such as "abs" or "neg", would only have one input, namely "a". Binary
operator modules, such as "add" or "sub", would have both "a" and "b" inputs. Currently, only
the logic modules might use more than two main inputs. Only modules which are sequential (ie,
take more than one cycle to complete) have the "start" and "done" signals.

1.5 Generator Area/Timing Information

Limited generator area and timing information can be obtained. The "gen.tech" class can be used
to print out or programmatically obtain timing/area info for a particular generator. The

199

parameter syntax is the same as the generator command line invocation, except that the first
parameter specifies the generator.

 java gen.tech add width=16

The above example would produce a timing report for a 16-bit add generator.

In addition, if you are interfacing directly to the generator classes, each generator class supports
three cost reporting routines:

public static int getRows(String s) // datapath rows used
public static int getColumns(String s) // datapath columns used (out
of 16)
public static int getCycles(String s) // cycles for sequential ops
public static double getDelay(String s) // combinational delay or min
period

200

2 Intrinsic Operator Specification

2.1 Generator: add

Binary Adder

2.1.1 Command-line Generation:

java gen.add name=string width= int reg=bool

2.1.2 Instantiation:

add_inst(Node parent, boolean plus, Wire a, Wire b, Wire ci, Wire ce, Wire out, Wire co,
boolean req, String name)

Pass in null for "ci" or "co" to bypass.

2.1.3 Operation:

out = a + b

The two input operands are added together.

2.1.4 Implementation:

Binary adder cells are used, with dedicated carry logic.

2.1.5 Special Options:

None.

2.1.6 Interface:

Name Req/Opt Dir Variability Description

a[a_width] R in a_width specifies bit width Input to adder

b[b_width] R in b_width specifies bit width Input to adder

out[width] R out width specifies bit width Output

clk O in Present if registered Clock input

ce O in Present if registered Clock enable

ci O in Direct instantiation only Carry input

co O out Direct instantiation only Carry output

201

2.2 Generator: comp

Integer compare functions

2.2.1 Command-line Generation:

java gen.compare name=string width= int type=string reg=bool

2.2.2 Instantiation:

comp_inst(Node parent, Wire a, Wire b, Wire ce, Wire out, String type, boolean signed,

 boolean req, String name)

2.2.3 Operation:
For cell type "e": out = (a==b)
For cell type "ne": out = (a!=b)
For cell type "g": out = (a>b)
For cell type "ge": out = (a>=b)
For cell type "l": out = (a<b)
For cell type "le": out = (a<=b)

Outputs a logic high if the selected comparison of A and B is true, or logic low otherwise.

2.2.4 Implementation:

The "e" and "ne" cell types compare four bit-pairs per CLB, skipping alternate CLBs, radix-4
ANDing up the results in central locations.

The "g", "ge", "l", and "le" cell types use a subtractor. Inputs are swapped for "l" and "le"
compares. The active-low borrow is used for "g" and "l" compares. Signed compares have
special logic for handling the most significant bit.

2.2.5 Special Options:

1. type=string

Specifies the type of compare function:

"e" - Equal "ne" - Not equal

"g" - Greater than "ge" - Greater than or equal

"l" - Less than "le" - Less than or equal

202

2.2.6 Interface:

Name Req/Opt Dir Variability Description

a[width_a] R in width_A controls bit width Input A into comparator

b[width_b] R in width_B controls bit width Input B into comparator

out[width] O out width controls bit width Compare output

clk O in Present if registered Clock input

ce O in Present if registered Clock enable

203

2.3 Generator: div

Binary Divider

2.3.1 Command-line Generation:

java gen.div name=string width=int signed=bool

2.3.2 Instantiation:

div_inst(Node parent, Wire a, Wire b, Wire start, Wire ce, Wire out, Wire done,

 Wire zero, boolean signed, String name)

2.3.3 Operation:

out = a/b

A is divided by B to produce result. Divide-by-zero is produced if required.

“DONE” flag is cleared on issue of “START” and is set upon divide completion.

2.3.4 Implementation:

An iterative add/subtract is performed on the remainder and divisor, based on the state of the
remainder. See "div_inst.java" source code for implementation details.

2.3.5 Special Options:

None.

2.3.6 Interface:

Name Req/
Opt

Dir Variability Description

a[width_a] R in width_a sets bit-width Dividend

b[width_b] R in width_b sets bit-width Divisor

out[width_out] R out width_out sets bit-
width

Result from divide

zero O out options sets presence Divide-by-zero indicator

start R in NA Triggers start of divide

done R out NA Indicates divide complete

clk R in NA Clock input

ce R in NA Clock enable

204

2.4 Generator: logic

Up to four-input logic evaluation specified by table.

2.4.1 Command-line Generation:

java gen.logic width= int inputs=int logic=int

2.4.2 Instantiation:

logic_inst(Node parent, Wire a, Wire b, Wire d, Wire e, Wire ce, Wire out,

 long table[], int num_inputs, boolean reg, String name)

2.4.3 Operation:
for (out=0, i=0; i<width; i++)
 out |= ((logic>>((a>>i)&1 + (b>>i<<1)&2 + (d>>i<<2)&4 +
(e>>i<<3)&8))&1)<<i;

2.4.4 Implementation:

A Lookup table is composed of the input logic number, and addressed by concat(e,d,b,a) for each
bit.

2.4.5 Special Options:

1. logic=int

The bits of the specified decimal integer specify the contents of the lookup table implementing
the logic function.

2. inputs=int

Specifies the number of inputs into the logic function (minimum 1, maximum 4)

2.4.6 Interface:

Name R/O Dir Variability Description

a[width] R in width specifies replication Input to the logic block

b[width] O in width specifies replication Input to the logic block

d[width] O in width specifies replication Input to the logic block

e[width] O in width specifies replication Input to the logic block

out[width] R out width is bit width of output Output from the logic block

Clk O in Present if registered Clock input

Ce O in Present if registered Clock enable

205

2.5 Generator: mul

 Binary Multiplier

2.5.1 Command-line Generation:

java gen.mul width= int stages=int

2.5.2 Operation:

out = a * b

Operands A and B are multiplied together to produce result.

2.5.3 Implementation:

A Booth encoding algorithm is used, processing two bits per stage per cycle. See
"mult_inst.java" source code for details.

2.5.4 Special Options:

1. stages=int

The number of shift/add stages included, each processing two bits.

2.5.5 Interface:

Name R/O Type Variability Description

a[width_a] R in width_a sets bit-
width

Multiplicand

b[width_b] R in width_b sets bit-
width

Multiplier

out[width] R out width sets bit-width Result from multiplier.

Start R in NA Starts the multiplication
sequence

Done O out NA Indicates completion of
multiplication

Clk O in NA Clock

Ce O in NA Clock

206

2.6 Generator: mux

Two-to-One Multiplexor

2.6.1 Command-line Generation:

java gen.mux width=int reg=bool

2.6.2 Instantiation:

mux_inst(Node parent, Wire a, Wire b, Wire ctrl, Wire ce, Wire out,

 boolean reg, String name)

2.6.3 Operation:

out = ctrl ? b : a

If the single-wire "ctrl" signal is high, the wide output gets "b", otherwise, "a".

2.6.4 Implementation:

The mux is implemented with the following logic: a & ~ctrl | b & ctrl

2.6.5 Special Options:

None.

2.6.6 Interface:

Name R/O Dir Variability Description

a[width] R in width specifies bitwidth Input selected when ctrl is
low

b[width] R in width specifies bitwidth Input selected when ctrl is
high

Ctrl R in none Control input

out[width] R out width specifies bitwidth of
output

Output from the multiplexor

Clk O in Present if registered Clock input

Ce O in Present if registered Clock input

207

2.7 Generator: neg

Twos-Complement negator

2.7.1 Generation:

java gen.neg name=string width=int reg=bool

2.7.2 Instantiation:

neg_inst(Node parent, Wire a, Wire ce, Wire out, Wire co, boolean req, String name)

2.7.3 Operation:

out = -a

2.7.4 Implementation:

The input, "a", is fed to the b-input of a subtractor module with its a-input grounded.

2.7.5 Special Options:

None.

2.7.6 Interface:

Name Req/Opt Dir Variability Description

a[width] R in width specifies bit width Input to neg

out[width] R out width specifies bit width Output from neg

CLK O in Present if reg=true Clock input

CE O in Present if reg=true Clock enable

CO O out Direct instantiation only Carry output

208

2.8 Generator: reg

Simple register

2.8.1 Generation:

java gen.reg name=string width=int

2.8.2 Instantiation:

reg_inst(Node parent, Wire a, Wire ce, Wire out, boolean req, String name)

2.8.3 Operation:

out = a

2.8.4 Implementation:

The input is fed to registers with clock enable inputs.

2.8.5 Special Options:

None.

2.8.6 Interface:

Name Req/Opt Dir Variability Description

a[width] R in width specifies bit width Input to reg

out[width] R out width specifies bit width Output from reg

CLK O in Present if reg=true Clock input

CE O in Present if reg=true Clock enable

209

2.9 Generator: rem

Integer remainder function (actually, "%" in C)

2.9.1 Command-line Generation:

java gen.rem name=string width= int signed=bool

2.9.2 Instantiation:

mod_inst(Node parent, Wire a, Wire b, Wire start, Wire ce, Wire out, Wire done,

 Wire zero, boolean signed, String name)

2.9.3 Operation:

out = a%b

A is divided by B and the remainder becomes the result. Divide-by-zero is produced if required.

“DONE” flag is cleared on issue of “START” and is set upon divide completion.

2.9.4 Implementation:

A divide operation is performed (see "div") and the remainder is used as the result.

2.9.5 Special Options:

None.

2.9.6 Interface:

Name Req/
Opt

Dir Variability Description

a[width_a] R in width_a sets bit-width Dividend

b[width_b] R in width_b sets bit-width Divisor

out[width_out] R out width_out sets bit-
width

Result from rem

Zero O out options sets presence Divide-by-zero indicator

Start R in NA Triggers start

Done R out NA Indicates rem complete

Clk R in NA Clock input

Ce R in NA Clock enable

210

2.10 Generator: shift

Shifter with variable shift count

2.10.1 Command-line Generation:

java gen.shift type=string width=int sign=bool

2.10.2 Instantiation:

shift_inst(Note parent, Wire a, Wire ctrl, Wire ce, Wire out, Sting type,

 boolean signed, boolean reg, String name)

2.10.3 Operation:

For cell type "l": out = a << ctrl

For cell type "r": out = a >> ctrl

For right shifts, sign extension is performed if "sign" is true.

2.10.4 Implementation:

The barrel shifter is produced with stacked selectable shift-by-1, shift-by-2, shift-by-4, shift-by-
8, and shift-by-16. The order is mixed to optimize timing (1,16,2,8,4 for a 32-bit shifter).

2.10.5 Special Options:
1. type=string

Selects the type of shifter ("l" for left, "r" for right)

2.10.6 Interface:

Name R/O Dir Variability Description

a[width] R in width specifies bitwidth Input to shifter

Ctrl R in log2(width) is bitwidth Shift amount

out[width] R out width_out specifies bit width output from shifter

Clk O in Present if registered Clock input

Ce O in Present if registered Clock enable

211

2.11 Generator: sub

Binary subtractor.

2.11.1 Command-line Generation:

java gen.sub name=string width=int reg=bool

2.11.2 Instantiation:

sub_inst(Node parent, boolean plus, Wire a, Wire b, Wire ci, Wire ce, Wire out,

 Wire co, boolean req, String name)

Pass in boolean false for "plus" to indicate subtraction. Pass in null for "ci" or "co" to bypass.

2.11.3 Operation:

out = a - b

"b" is subtracted from "a".

2.11.4 Implementation:

Binary subtract cells are used, with dedicated carry logic.

2.11.5 Special Options:

None.

2.11.6 Interface:

Name Req/Opt Dir Variability Description

a[a_width] R in a_width specifies bit width Input to sub

b[b_width] R in b_width specifies bit width Input to sub

out[width] R out width specifies bit width Output

Clk O in Present if registered Clock input

Ce O in Present if registered Clock enable

Ci O in Direct instantiation only Carry input

Co O out Direct instantiation only Carry output

212

3 Group 2 Domain Specific Functions

For the domain generators, an equivalent C function is provided where applicable for
behavioral/source modeling.

3.1 Generator: abs

Absolute value

3.1.1 Generation:

java gen.abs name=string width=int reg=bool

3.1.2 Instantiation:

abs_inst(Node parent, Wire a, Wire ce, Wire out, Wire co, boolean req, String name)

3.1.3 Operation:

int nimble_abs(int a) { return(a<0 ? -a : a); }

If the sign bit of “a” is set, then it is negated (twos complemented).

3.1.4 Implementation:

The input, "a", is fed to the a-input of an adder/subtractor module with its b-input grounded. The
add/sub control (add if high) is tied to the inversion of the sign bit.

3.1.5 Special Options:

None.

3.1.6 Interface:

Name Req/Opt Dir Variability Description

a[width] R in width specifies bit width Input to ABS

out[width] R out width specifies bit width Output from ABS

CLK O in Present if reg=true Clock input

CE O in Present if reg=true Clock enable

CO O out Direct instantiation only Carry output

213

3.2 Generator: bytesel

Byte Select

3.2.1 Command-line Generation:

java gen.bytesel name=string width=int reg=bool

3.2.2 Instantiation:

bytesel_inst(Node parent, Wire a, Wire ce, Wire out, boolean req, String name)

3.2.3 Operation:

unsigned int nimble_bytesel(unsigned int a, int b) { return(a<<b*8>>24); }

Return the indicated byte of the input (MSB is byte 0, LSB is byte 3).

3.2.4 Implementation:

The input is fed to selectable shift-by-16 and shift-by-8 stages. The shift-by-16 is enabled if bit-
1 of "b" is high. The shift-by-8 is active if bit-0 of "b" is high.

3.2.5 Special Options:

None.

3.2.6 Interface:

Name Req/Opt Dir Variability Description

a[width] R in width specifies bit width Input to bytesel

out[width] R out width specifies bit width Output

Clk O in Present if registered Clock input

Ce O in Present if registered Clock enable

214

3.3 Generator: fir

Finite Impulse Response filter

3.3.1 Command-line Generation:

java gen.fir name=string a_width=int coef_width= int taps=int init=int,int,...

3.3.2 Instantiation:

fir_inst(Node parent, Wire a, Wire ce, Wire seq_clr, Wire out, Wire done,
 int num_taps, int coef_width, long init[], String name)

3.3.3 Operation:

Performs and FIR filter function, performing a weighted sum on a queue containing current a
previous input samples.

3.3.4 Implementation:

This uses a distributed arithmetic approach for the FIR:

3.3.5 Special Options:

1. init=int,int,... Specifies filter taps values

2. coef_width Specifies the coefficient width

3. taps Specifies the number of taps

REG

PARALLEL

TO

SERIAL

CONVERSI
ON

DALUT ADDER

TREE

ACCUMULATO
R

INPUT SAMPLE

FILTER

OUTPUT

ADDRESS

SEQUENCERSTART DONE

Parallel in,

Add/Subtrac

Add except when

Clear accumulator at start of each

Counter modulo determined

by the number of bits in

LUT requirements

determined by number

215

3.3.6 Interface:

Name Req/Opt Dir Variability Description

a[a_width] R in a_width specifies bitwidth Data input

out[width] R out width specifies bit width Output of FIR

Clk O in NA Clock input

Ce O in NA Clock enable

seq_clr O in NA Sequencer clear

Firdone O in NA Indicates complete

216

3.4 Generator: parcnt

A 32-bit counter which skips the parity bits (the LSb) of each byte.

3.4.1 Generation:

java gen.parcnt name=string width=int reg=bool

3.4.2 Instantiation:

parcnt_inst(Node parent, Wire a, Wire ce, Wire out, boolean req, String name)

3.4.3 Operation:
unsigned int nimble_parcnt(unsigned int a)
{
 a = (a>>1)&0x7f | (a>>2)&0x3fc0 | (a>>3)&0x1fe000 |
(a>>4)&0x0ff00000;
 a++;
 a = (a<<1)&0xfe | (a<<2)&0xfe00 | (a<<3)&0xfe0000 |
(a<<4)&0xfe000000;
 return(a);
}

3.4.4 Implementation:

Bits 31-25, 23-17, 15-9, 7-1 are fed to an incrementor. The result is

padded back up to 32 bits.

3.4.5 Special Options:

None.

3.4.6 Interface:

Name Req/Opt Dir Variability Description

a[width] R in width specifies bit width Input to counter

out[width] R out width specifies bit width Output from counter

Clk O in Present if registered Clock input

Ce O in Present if registered Clock enable

217

3.5 Generator: permute

General bit position changer with set and clear masks

3.5.1 Command-line Generation:

java gen.permute name=string width=int reg=bool table=int,int,int,...

3.5.2 Instantiation:

permute_inst(Node parent, Wire a, Wire ce, Wire out, int[] table, boolean req,
 String name)

3.5.3 Operation:
unsigned int nimble_permute(unsigned int a, const int *tab)
{
 unsigned int i, r=0;

 for (i=0; i<32; i++)
 r |= ((tab[i]>=0 ? ((a>>tab[i])&1) : tab[i]==-1 ? 1 : 0)<<i);
 return(r);
}

The indexed output bit gets the input bit corresponding to the indexed table entry. An table entry
of –1 routes VCC to the indexed output bit and –2 routes GND. Index “0” corresponds to the
least significant bit.

3.5.4 Implementation:

FPGA routing resources are used. Power and grounds are made in CLBs.

3.5.5 Special Options:

1. table=int,int,int... or type=int,int,int...

Specifies the permute table using a comma separated list of decimal integers.

3.5.6 Interface:

Name Req/Opt Dir Variability Description

a[width_a] R in a_width specifies input width Input to permute

out[width] R out width specifies output width Output from
permute

Clk O in Present if registered Clock input

Ce O in Present if registered Clock enable

218

3.6 Generator: ram

Random Access Memory

3.6.1 Command-line Generation:

java gen.ram name=string width= int depth=int init=int,int,...

3.6.2 Instantiation:

ram_inst(Node parent, Wire a, int addr_width, Wire we, Wire addr, Wire ce,

 Wire out, long init[], String name)

3.6.3 Operation:

Performs as a Random Access Memory.

3.6.4 Implementation:

This RAM is implemented in CLBs. Muxing is provided for rams deeper than 32.

3.6.5 Special Options:

1. init=int,int,...

Specifies initial contents of the RAM.

3.6.6 Interface:

Name Req/
Opt

Dir Variability Description

a[width] R in width specifies bit width Data input

We R in NA Write Enable

addr[addr_width] R in Bitwidth is log2(depth) Address

out[width] R out width specifies bit width Output from RAM

Clk O in Present if registered Clock input

Ce O in NA Clock enable

219

3.7 Generator: rom

Read Only Memory

3.7.1 Command-line Generation:

java gen.rom name=string width= int depth=int init=int,int,...

3.7.2 Instantiation:

rom_inst(Node parent, Wire a, int addr_width, Wire ce, Wire out, long init[],

 String name)

3.7.3 Operation:

int nimble_rom(int addr, const int *init) { return(init[addr]); }

3.7.4 Implementation:

This ROM is implemented in CLBs with multiplexing provided for depths greater than 32.

3.7.5 Special Options:

1. init=int,int,...

Specifies contents of the ROM.

3.7.6 Interface:

Name Req/Opt Dir Variability Description

a[a_width] R in a_width specifies bitwidth Address input

out[width] R out width specifies bit width Output from RAM

Clk O in NA Clock input

Ce O in NA Clock enable

220

3.8 Generator: sbox

The S-Box computation for the DES cryptographic function

3.8.1 Command-line Generation:

java gen.sbox name=string reg=bool

3.8.2 Instantiation:

sbox_inst(Node parent, Wire a, Wire b, Wire ce, Wire out, boolean reg, String name)

3.8.3 Operation:
unsigned int nimble_sbox(unsigned int a, unsigned int b)
{
 int ret=0, box, lr, i;
 const int P[32] = {
 7,28,21,10,26,2,19,13,23,29,5,0,18,8,24,30,22,1,14,27,6,9,17,31,15,4,20,3,11,12,25,16
 };

 int S[8][64] = {
 {14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,
 4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13},
 {15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,
 0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9},
 {10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,
 13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12},
 {7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,
 10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14},
 {2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,
 4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3},
 {12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,
 9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13},
 {4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,
 1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12},
 {13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,
 7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11}
 };

 for (box=1; box<9; box++) {
 lr = ((box<5 ? a:b) >> (3-((box-1)%4))*6)&0x3f;
 i = lr&32 | (lr>>1)&15 | (lr<<4)&16;
 ret |= (S[box-1][i] << ((8-box)*4));
 }
 return(nimble_permute(ret,P)); /* do the "P" permute */
}

3.8.4 Implementation:

The sbox function is composed of ROMs and routing. 32 bits of output are formed by feeding 6
bits at a time (from l to r) into s1 through s8.

3.8.5 Special Options:

None.

221

3.8.6 Interface:

Name R/O Dir Variability Description

A R in NA The left (MSB) 24 bits of the 48-
bit SBOX input word

B R in NA The right (LSB) 24 bits of the
48-bit SBOX input word

out[32] R out NA Output

Clk O in Present if registered Clock input

Ce O in Present if registered Clock input

222

3.9 Generator: sjg

The "G" function for the Skipjack cryptographic algorithm

3.9.1 Command-line Generation:

java gen.sjg name=string reg=bool

3.9.2 Instantiation:

sjg_inst(Node parent, Wire a, Wire b, Wire ce, Wire out, boolean reg, String name)

3.9.3 Operation:
unsigned int nimble_sjg(unsigned int a, unsigned int b)
{
 const unsigned char f[256] = {
 0xa3,0xd7,0x09,0x83,0xf8,0x48,0xf6,0xf4,0xb3,0x21,0x15,0x78,0x99,0xb1,0xaf,0xf9,
 0xe7,0x2d,0x4d,0x8a,0xce,0x4c,0xca,0x2e,0x52,0x95,0xd9,0x1e,0x4e,0x38,0x44,0x28,
 0x0a,0xdf,0x02,0xa0,0x17,0xf1,0x60,0x68,0x12,0xb7,0x7a,0xc3,0xe9,0xfa,0x3d,0x53,
 0x96,0x84,0x6b,0xba,0xf2,0x63,0x9a,0x19,0x7c,0xae,0xe5,0xf5,0xf7,0x16,0x6a,0xa2,
 0x39,0xb6,0x7b,0x0f,0xc1,0x93,0x81,0x1b,0xee,0xb4,0x1a,0xea,0xd0,0x91,0x2f,0xb8,
 0x55,0xb9,0xda,0x85,0x3f,0x41,0xbf,0xe0,0x5a,0x58,0x80,0x5f,0x66,0x0b,0xd8,0x90,
 0x35,0xd5,0xc0,0xa7,0x33,0x06,0x65,0x69,0x45,0x00,0x94,0x56,0x6d,0x98,0x9b,0x76,
 0x97,0xfc,0xb2,0xc2,0xb0,0xfe,0xdb,0x20,0xe1,0xeb,0xd6,0xe4,0xdd,0x47,0x4a,0x1d,
 0x42,0xed,0x9e,0x6e,0x49,0x3c,0xcd,0x43,0x27,0xd2,0x07,0xd4,0xde,0xc7,0x67,0x18,
 0x89,0xcb,0x30,0x1f,0x8d,0xc6,0x8f,0xaa,0xc8,0x74,0xdc,0xc9,0x5d,0x5c,0x31,0xa4,
 0x70,0x88,0x61,0x2c,0x9f,0x0d,0x2b,0x87,0x50,0x82,0x54,0x64,0x26,0x7d,0x03,0x40,
 0x34,0x4b,0x1c,0x73,0xd1,0xc4,0xfd,0x3b,0xcc,0xfb,0x7f,0xab,0xe6,0x3e,0x5b,0xa5,
 0xad,0x04,0x23,0x9c,0x14,0x51,0x22,0xf0,0x29,0x79,0x71,0x7e,0xff,0x8c,0x0e,0xe2,
 0x0c,0xef,0xbc,0x72,0x75,0x6f,0x37,0xa1,0xec,0xd3,0x8e,0x62,0x8b,0x86,0x10,0xe8,
 0x08,0x77,0x11,0xbe,0x92,0x4f,0x24,0xc5,0x32,0x36,0x9d,0xcf,0xf3,0xa6,0xbb,0xac,
 0x5e,0x6c,0xa9,0x13,0x57,0x25,0xb5,0xe3,0xbd,0xa8,0x3a,0x01,0x05,0x59,0x2a,0x46
 };
 unsigned int g1,g2;

 g1 = (a>>8) ^ f[(a ^ (b>>24))&255];
 g2 = a&255 ^ f[(g1 ^ (b>>16))&255];
 g1 ^= f[(g2 ^ (b>>8)) &255];
 g2 ^= f[(g1 ^ b) &255];
 return((g1<<8)| g2);
}

3.9.4 Implementation:
The "G" function is composed of ROMs, XORs, and routing.

3.9.5 Special Options:

None.

223

3.9.6 Interface:

Name R/O Dir Variability Description

A R in NA The "w1" input to the G function

B R in NA The 4 bytes of key to be used in
the G function

out[32] R out NA Output

Clk O in Present if registered Clock input

Ce O in Present if registered Clock input

224

Appendix J. Final Technical Deliverables Status

In the section, we review the status of deliverables listed in the Nimble project agreement. We
list each deliverable (in italic) followed by a summary of its status.

1. Study of FPGA co-processor implementation techniques (4QFY98 Draft, 4QFY99 Final)
(Task 1.2) (NSC)

Finished. Studied and compared multiple Agileware platforms. The final implementation of
Nimble supports Garp, ACEII, and ACEV platforms. Detailed documentation regarding the
ACEV platform is included in Appendices A and B.

2a. Library of Java based generator functions released and made available on the WWW
(Intrinsic operator elements: 3QFY99, Domain specific elements: 3QFY00) (Task 5.3)
(UCBerkeley)

Finished. Java-based (JHDL, a Java-base hardware description language) generator functions are
implemented and integrated into the Nimble environment. It is included in the Nimble Phase 1+
release as well as the final release. The related documents (Appendix H and Appendix I) can be
made available on the WWW once submitted to the government. Also refer to Section 2.5 of this
report and the two supporting documents Appendix H and Appendix I for technical discussions
on this item.

2b. Specification of a vendor neutral API to the function generator library (3QFY98 Draft,
2QFY99 Preliminary, 1QFY00 Final) (Task 1.3) (UCBerkeley)

Finished. Refer to Section 2.5 of this report, and the supporting document Appendix H.

2c. List of base library generator functions. (1QFY99 Draft, 3QFY99 Preliminary, 2QFY00
Final) (Task 1.4) (NSC)

Finished. Refer to Section 2.5 of this report. List of the base library generator functions is also
reported in Appendix I.

3a. [D4] Operator library implementation of base library functions on Xilinx 4000 family
device. (2QFY99) (Task 5.2) (NSC)

Finished. Java-based (JHDL) generator functions are implemented and integrated into the
Nimble environment. The final target reconfigurable datapath is the more powerful Xilinx
Vertex 1000 family of devices. Refer to Section 2.5 of this report, and two supporting documents
Appendix H and Appendix I.

225

3b. D4 language specification and user guide published and available openly. (1QFY99)
(Task 5.1) (NSC)

Finished. Final document is included as a supporting document to this report. See Appendix L in
Vol II.

4. Specification of Agileware Architecture Definition Language (1QFY99) (Task 3.2)
(Synopsys)

Finished. Final document is included as a supporting document to this report. See Appendix K in
Vol II.

4b. Update to specification of Agileware Architecture Definition Language and initial code
processing of the language (3QFY99) (Task 3.2) (Synopsys)

Finished. See item 5.

4c. Update to specification of Agileware Architecture Definition Language and cost function
inclusion into the processing (2QFY00) (Task 3.2) (Synopsys)

Finished. See item 5.

6. Language style guide for the Nimble Compiler (1QFY99 baseline, 3QFY99 w/ parallel,
1QFY00 w/ domain) (Task 1.5) (Synopsys)

Finished. The final document is included as Appendix L in Vol II.

6. Demonstration of the initial (phase 1) new tool environment on an ACS architecture with
at least one application from the cryptography algorithm set. Featuring tentatively the
user pragma specification of enhancements, target optimizations of code, basic FPGA
datapath component assembly with manual optimal placement. Up to five (5)
unsupported, binary licenses of tool set to be made available to ACS research program
participants (universities and potential customers) (4QFY99) (Task 2 - 6) (Synopsys)

Finished. Demonstrated Nimble on cryptography algorithms including several skipjack
implementations and the DES algorithm. Results are reported in the final benchmark report
(Appendix M in Vol II). Binary licenses along with the actual hardware have been shipped to
several research institutes. Tutorials were given at the October 2000 PI meeting.

7. Demonstration of a number of higher level signal and image processing function
generator library elements that require complete datapath construction (for example:
FIR filters, I/DCT, and Hough transforms). Results available on the WWW. (4QFY00)
(Task 6) (UCBerkeley)

226

Finished. Demonstrated Nimble on a number of signal and image processing applications from
different sources (MediaBench, ACS benchmarks, and SPEC benchmarks). Results are reported
in the final benchmark report (Appendix M in Vol II). Results can be published on the WWW
once submitted to the government.

8. Demonstration of the final (phase 2) Nimble C Compiler environment and libraries on at
least one ACS architecture and one other architecture; including one cryptography and
one multimedia algorithm set. Featuring tentatively the capacity (size) and rank-order
cost function hardware selection, bit width interpolator, domain libraries for quick
synthesis and composition, and automatic placement of the datapath. Up to five (5)
unsupported, binary licenses of tool set to be made available to ACS research program
participants (universities and potential customers) (4QFY00) (Task 2 - 6) (Synopsys)

Finished. Demonstrated Nimble on the Garp, ACEII and ACEV architectures. The final Nimble
environment includes compiler optimizations, comprehensive profiling and analysis framework,
performance driven hardware-software partitioner, domain-specific libraries, quick synthesis
capability and automatic placement of the datapath. Binary licenses along with the actual
hardware have been shipped to several research institutes. Tutorials were given at the October
2000 PI meeting.

9. Detailed Program Plan (3QFY98, 1QFY99, 1QFY00) and Final Report (4QFY00) (Task
1.1) (Synopsys)

Finished. Plans and detailed schedules were submitted for three phases: Phase 0, Phase 1, and
Phase1+/Phase2. This document along with about 400 pages of supporting documentation serves
as the final report.

10. Quarterly Reports and Yearly PI meeting (as needed) (Task 1.1) (Synopsys)

Finished. Submitted quarterly reports and attended all the PI meetings during the project period.

11. Demonstrate prototype C FE to mixed Processor and Xilinx 4K (4QFY98) (Task 2.1,
Task 4.1) (Synopsys)

Finished. Demonstrated the prototype C front-end to mixed process and Xilinx 4K (the ACEV II
platform) at the February 1999 DARPA/AF review.

12. Benchmark report that compares the Phase 1 and 2 demonstration platforms with Phase
0 and with other programmable processor only solutions and utilizes the demonstration
platform results (2QFY99 preliminary, 1QFY00 Phase 1 draft, 4QFY00 Final) (Task 6.1)
(Synopsys)

Finished. Final benchmark report is included in Appendix M in Vol II.

	VOLINI~1.PDF
	acev-doc.pdf
	Introduction
	System Architecture
	Hardware
	Software

	Embedded Processor System
	Reconfigurable Processing Unit
	EPS View of the RPU
	RPU View of the EPS

	Memory Map
	Low Memory
	Application Code and Data
	C Library Heap and Stack Space
	FPGA-Accessible Memory
	RTEMS Workspace

	ACEV API
	Initialization
	Addressing
	FPGA Configuration
	Clock Programming
	Interrupt Handling
	Synchronization

	Design Flow
	Software
	Hardware
	Run-Time

	Tools
	bit2o
	rtemsserver
	LPWB

	Sample Makefile
	Sample Hardware
	Sample Pin Assignments
	Troubleshooting
	Host VSP device busy

	acev-doc.pdf
	Introduction
	System Architecture
	Hardware
	Software

	Embedded Processor System
	Reconfigurable Processing Unit
	EPS View of the RPU
	RPU View of the EPS

	Memory Map
	Low Memory
	Application Code and Data
	C Library Heap and Stack Space
	FPGA-Accessible Memory
	RTEMS Workspace

	ACEV API
	Initialization
	Addressing
	FPGA Configuration
	Clock Programming
	Interrupt Handling
	Synchronization

	Design Flow
	Software
	Hardware
	Run-Time

	Tools
	bit2o
	rtemsserver
	LPWB

	Sample Makefile
	Sample Hardware
	Sample Pin Assignments
	Troubleshooting
	Host VSP device busy

	dac00-paper.pdf
	Introduction
	Previous Work
	Problem Formulation
	Nimble Compilation Overview
	Hardware/software Partitioning Problem Formulation
	Global Cost Function

	Algorithm Flow
	Loop Entry Trace Profiling and Compression
	Interesting Loop Detection
	Intra-Loop Selection
	Inter-Loop Selection
	Hierarchical Loop Clustering Based on the Loop-Procedure Hierarchy Graph
	Optimal Selection in Loop Clusters

	Experimental Results
	Conclusions
	Acknowledgement
	References

